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Abstract 

In this research, we introduce our methods for creating a COVID-19 diagnostic tool based on the artificial 

intelligence to analyze the data of COVID-19 external symptoms such as cough, respiratory sounds, and 

other clinical symptoms such as fever, muscle pain, cold, sore throat, asthma, etc. to detect the virus without 

the need of any chemical or clinical tests which are expensive, slow and not available everywhere. Our 

diagnostic tool can be used publicly in crowded places such as shops, schools, or any human gatherings to 

detect the patients in their early stages, reduce the virus spread and forward the suspected people to clinical 

examination. 

For creating our tool, we used deep learning-based models to analyze and learn from the collected sounds and 

the clinical features of confirmed COVID-19 cases and other normal cases. By using those models as 

classifiers they could distinguish the positive cases from the negatives. And we found that using simple 

binary classifiers trained with small samples of COVID-19 data collected early in 2021 can be trustworthy to 

detect COVID-19 in the recently collected samples regardless of the changes that occurred to the virus. And 

by testing the samples collected from 313 cases after several months of training our models, we could 

achieve an average accuracy of 91% to prove the proficiency of our tool in diagnosing COVID-19 and 

detecting the virus in the long term after several mutations. 
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1 Introduction 

By the end of March 2022, about 64.5% of the world 

population has received at least one dose of a 

COVID-19 vaccine, 11.29 billion doses have been 

administered globally, and about 18 million are now 

administered each day [1].  

As Oxford AstraZeneca, Sinopharm, Sinovac-

CoronaVac and Janssen Ad26.COV2.S vaccines have 

an efficacy of 63.09%, 79%, 51%, and 66.9% 

respectively against symptomatic SARS-CoV-2 

infection [2–5], and while vaccination prevents 

serious illness and death, it will not keep you from 

being infected and passing the virus to others [6]. 

And the more we allow the virus to spread, the more 

opportunity the virus has to change [6]. So, public 

health practices such as mask-wearing and social 

distancing will continue to be important until a 

sufficient proportion of the population is immunized 

or achieves herd immunity [7, 8]. Therefore, the need 

for reliable and rapid pre-screening tools for COVID-

19 detection and diagnosis will always remain for a 

longer time, especially because of the lack of interest 

in precautionary measures. 
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Other than those who work in the medical field, 

many researchers studied the spread and the 

diagnostic methods of COVID-19 using statistical 

and mathematical models. In [9] they used a 

fractional mathematical model to study the effect of 

various parameters of the coronavirus and discussed 

the possibility to slow the speed of spreading of 

COVID-19 by social distancing and decreasing the 

contact rates. Also, Artificial Intelligence researchers 

had an important role, some studies worked on 

predicting the number of coming positive COVID-19 

cases as discussed in [10]. While others used AI-

based models to detect COVID-19 by classifying 

Chest images or X-Ray scans [11, 12]. While the dry 

cough was the most significant symptom of COVID-

19, many studies discussed the possibility of 

detecting COVID-19 by classifying the cough and the 

respiratory sounds using machine learning models 

[13, 14].   

 

In this research, we continue our efforts that have 

been started in [15] where we discussed the 

importance of using several COVID-19 sounds rather 

than cough sounds only for the sound-based COVID-

19 diagnosis to create a fast and efficient pre-
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screening tool to detect the virus in the early stages. 

And now we aim to confirm the importance of using 

the clinical information that describes the suspected 

person’s health condition such as fever, muscle pain, 

cold, sore throat, asthma, pneumonia, and chronic 

lung disease besides the cough and respiratory sounds 

for building more reliable COVID-19 classifiers 

based on the external symptoms.    

 

2 Related Works 

There are many former studies interested in the 

external symptoms of COVID-19 and worked to 

utilize them for distinguishing the infected persons 

from the healthy ones using Machine learning and 

Deep Learning-based models. Some studies trained 

their models using the COUGHVID dataset [16] 

which provides thousands of cough recordings 

obtained from positive and negative volunteers. 

Others preferred the Coswara dataset [17] in which 

each volunteer has recorded 9 types of sounds such as 

cough, breathing, and different voice patterns labeled 

with COVID-19 status besides metadata and clinical 

features that describe the health condition of the 

audio samples’ owner. 

 

For the sake of the sound-based diagnosis of COVID-

19, we found some studies worked on the 

classification of cough sounds only [18, 19]. While  

[20] preferred detecting the presence of COVID-19 

through speech and voice rather than using cough 

sounds. Others included both cough sounds and 

several respiratory sounds for training their models 

[21–23]. Whereas In [24–26], they used not only 

COVID-19 sounds but also the clinical features of 

patients to create an ensemble model with multiple 

inputs of features extracted from different symptoms 

of COVID-19 seeking to increase the classification 

accuracy.  

In our previous research [15], besides using cough 

and respiratory sounds of COVID-19 to train our 

deep models, we introduced using special human 

voices such as recordings of counting and vowels, to 

train several models with a unique sound type for 

each model, then every separate model is used to 

detect the COVID-19 by testing samples of the same 

sound type used to train it, finally, the predictions of 

those models are averaged for voting the presence or 

absence of COVID-19 in the sounds collected from 

that suspected person. In Table 1. we present a 

comparison between some of the sound-based 

COVID-19 researches that used the Coswara dataset 

for training their shallow or deep models [17]. 

 

Table 1. The classification results of different studies used the Coswara dataset for training their models. 

Research Sound type/Features Models /Classifiers Results  

Bagad et al., 2020 [27] Cough ResNet-18 AUC = 72% 

Pahar et al., 2020 [19] Cough 
Resnet50 
LSTM 

AUC = 98% 
AUC = 94% 

Verde et al. 2021[20] Speech SVM Accuracy = 97% 

Pahar et al., 2021 [28] Cough or Breathing or Speech Resnet50 

AUC = 98% for coughs 

AUC = 94% for breaths 

AUC = 92% for speech 

Aly et al., 2021 [15] Cough and Breathing and Speech  Deep Learning Models  Averaged AUC = 96.4%  

Fakhry, Ahmed, et al., 2021 [26] Cough – Clinical Information 
Multi-Branch Deep 
Learning Network 

Averaged AUC =  %91 

 

 

3 Methods 

In this study, we aim to emphasize the importance of 

using the clinical features that describe the health 

condition of COVID-19 patients besides the 

respiratory sounds and human voices for training 

more reliable COVID-19 classifiers that rely only on 

the external symptoms with no need for chemical or 

radiological tests. Also, we want to confirm that 

models trained with respiratory sounds collected 

early in the past year, could be knowledgeable 

enough to classify test samples of different COVID-

19 sounds collected recently after many changes and 

mutations that had occurred to the virus.  

 

3.1 Data Collection 

Since the beginning of the pandemic, many efforts 

have been made to collect COVID-19 sounds and 

publish them publicly for research purposes. One of 

those projects was the Coswara dataset [17]. The 

Coswara dataset is a database of breathing, cough, 
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and voice sounds for COVID-19 attached with other 

clinical features for the volunteers like fever, muscle 

pain, cold, sore throat, asthma, pneumonia, and 

chronic lung disease. We used this dataset for 

training our models. 

3.1.1  Training Data 

In this study, we used the same pre-trained sound 

models introduced in [15]. So, we could have 9 

separate models that have been trained using 9 sound 

types of COVID-19 taken from the Coswara dataset 

[17]. Those models were (breathing-deep, breathing-

shallow, cough-heavy, cough-shallow, counting-fast, 

counting-normal, vowel-a, vowel-e, vowel-o) as 

described in [15]. But now we want to use the clinical 

features attached to the COVID-19 sounds in the 

Coswara dataset to see their effect on the 

classification performance. Therefore, we have 

created a new dataset containing the clinical features 

of the volunteers who have recorded the sound 

samples. The selected features were (fever, muscle 

pain, cold, sore throat, asthma, pneumonia, and 

chronic lung disease). This dataset will be used to 

train a new clinical features-based model to be used 

besides the existing sound models for detecting 

COVID-19  as we will discuss in the next sections. 

3.1.2  Testing Data 

For testing our models and evaluating their 

performances in Coronavirus detection, we used 

more samples from the Coswara dataset [17]. Those 

samples were published in the following 5 months 

June, July, August, and September 2021 after training 

the models. We have selected all the samples that 

were labeled with covid_status (positive_mild, 

positive_asymp, positive_moderate) and considered 

them as (positive), in contrast, we have selected all 

samples with the status normal and labeled them as 

(negative). Finally, we have divided the data of the 

four months into 4 groups, each group containing 9 

different types of COVID-19 sounds and the clinical 

symptoms dataset that describes the health condition 

of each volunteer. In Table 2, we describe the number 

of unique samples for each dataset in the testing 

groups. 

Table 2. The number of samples in a testing group. 

Test Group Negative  Positive  Total 

2021-06 38 70 108 

2021-07 13 89 102 

2021-08 11 4 15 

2021-09 15 73 88 

All Groups 77 236 313 

 

 

The final result was four groups (2021-06, 2021-07, 

2021-08, 2021-09) each group contains 10 datasets,  

where 9 of them represent COVID-19 sounds 

(breathing-deep, breathing-shallow, cough-heavy, 

cough-shallow, counting-fast, counting-normal, 

vowel-a, vowel-e, vowel-o) and the last dataset is the 

clinical symptoms data of the same volunteers who 

have recorded the sounds, and all samples were 

labeled with COVID-19 status positive or negative as 

described in Fig. 1. 

 

 
Fig. 1. A description of the testing groups 
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3.2 Feature Extraction 

While our previous study [15] is based on the theory 

that confirms the existence of the Coronavirus 

signature in the cough and respiratory sounds of 

patients. This research is based on an assumption that 

emphasizes the necessity of using the data of the 

clinical symptoms alongside the COVID-19 sounds 

to build more accurate and reliable COVID-19 

detectors. Therefore the feature extraction was an 

important step to extract the most significant features 

from the raw COVID-19 sounds and data to help our 

deep models learn and classify those samples 

correctly and detect the signature of COVID-19 if it 

was found. 

And for the COVID-19 sound datasets, we extracted 

the same features described in [15] section 3.3. The 

main features are Mel Frequency Cepstral 

coefficients (MFCCs) which were used widely in 

many COVID-19 sound-based classification studies  

[15, 18, 21, 25, 26], besides other frequency, time 

domain, and statistical features as indicated in Fig. 2 

below. 

And for the clinical symptoms dataset, we have 

selected 9 features (pneumonia, asthma, breathing 

difficulties, diarrhea, fatigue, muscle pain, fever, 

cold, sore throat) labeled with COVID-19 status 

positive or negative. As not all those features are 

available for every case in the dataset and there are 

many missing features, we have merged those 

features into 3 groups containing similar features that 

were Feature_A (pneumonia or asthma or breathing 

difficulties), Feature_B (diarrhea or fatigue or muscle 

pain) and Feature_C (fever or cold or sore throat). 

For each feature set, if one symptom or more are 

available, then the feature will be (True) otherwise, it 

will be (False). Finally, we could have a dataset 

containing 3 features (Feature_A, Feature_B, 

Feature_C) labeled with COVID-19 status positive or 

negative.  

 

Fig. 2. The extracted features from a COVID-19 audio sample [15] 

 

 

3.3 Classification 

 

3.3.1  Model Architecture 

As we will train a new model to classify the clinical 

features introduced in this research. We will use the 

same network architecture in [15] with minor 

changes in the input shape as indicated in Fig. 3. The 

clinical features selected for the training process 

mentioned in section 3.3 were oversampled to 

balance the positive samples with negatives using the 

Smote oversampling technique introduced in [15, 

19]. The final features dataset contained 1173 

positive samples versus 1173 negatives the same as 

every dataset used for training the sound models and 

were ready to train our new clinical features model.   

 
Fig. 3. The clinical features network architecture. 
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3.3.2 Multiple Classifiers 

Now we have 10 models that have been trained with 

10 datasets of COVID-19 sounds and clinical features 

extracted from the Coswara dataset [17]. The testing 

methodology that we introduced in [15] and proved 

its success, was to average the predictions of multiple 

models that have been trained and tested separately 

with unique data or a sound type. Here we continue 

using the same method with a small change, which is 

to add the newly created clinical features model to 

the sound models set to understand its effect on the 

overall classification performance as shown in Fig 4.  

 

While we won’t use all the 10 classifiers at the same 

time, we have to find the best models set that 

achieves the highest classification accuracy, and this 

can’t be determined unless testing our data with all 

model combinations. As discussed in detail in [15] 

section 4.4, we will use the power set concept to 

determine all subsets of models in the set {clinical 

information, breathing-deep, breathing-shallow, 

cough-heavy, cough-shallow, counting-fast, 

counting-normal, vowel-a, vowel-e, vowel-o} which 

size is 10 and has     = 1024 combination of models. 

And for averaging the predictions of several models, 

we will use the mean statistical function. 

 

Fig. 4. The strategy of models training and evaluation with different types of COVID-19 sounds and the clinical information. 

 

 

4 Results 

In [15] we have tested all the combinations of models 

on the 24 samples taken from the Coswara dataset in 

May 2021 [17]. And we found that a combination of 

6 models {breathing-shallow, cough-heavy, cough-

shallow, counting-fast, vowel-e, vowel-o} achieved 

the highest classification accuracy and detected all 

the positive samples which were 10 samples. 

Although the testing dataset was small, the 

classification results have given us a rule about the 

importance of using multiple sound models rather 

than using a single model for diagnosing COVID-19 

and this rule will be confirmed again here with larger 

testing datasets. And the question that is going to be 

answered now is: Will this models combination keep 

its high classification results with the testing data 

uploaded in the next months June, July, August, and 

September or it was just a coincidence that occurred 

with small samples of data selected from May’s data. 

Also, we will know whether the newly introduced 

clinical features model would help to increase the 

overall classification performance or not. 

So, in the next sections we will discuss our 

classification results for several testing datasets 

using: 

1) Hybrid models combination (It contains sound 

models and clinical features model together). 

2) Sound models. 

3) Clinical features model. 
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4.1 Group 2021-06 

As mentioned in section 3.2, this group contained 

108 samples for each sound type recorded in June 

2021. After testing this group by all models 

combinations, we found that averaging the 

predictions of the models set {breathing-deep, 

breathing-shallow, cough-heavy, cough-shallow, 

vowel-e, vowel-o, clinical information} using the 

mean value of predictions, could detect (62) positive 

samples out of (70) as indicated in Fig 5.a. While 

using the same models set without the clinical 

features model decreased the accuracy by 2% and 

detected less positive samples (see Fig 5. b). 

Whereas, the clinical features model alone achieved 

the lowest accuracy as indicated in Table 3.  

Table 3. The best classification results on testing group 2021-06 with Hybrid models combination, sound models combination, 

and the clinical model. 

Type Models ACC AUC 

Hybrid breathing-deep, breathing-shallow, cough-heavy, cough-shallow, vowel-e, vowel-o, clinical 

information 
0.86 0.85 

Sounds breathing-deep, breathing-shallow, cough-heavy, cough-shallow, vowel-e, vowel-o 0.84 0.84 

Clinical clinical information 0.67 0.72 

 

               
(a)                                             (b)                                                (c) 

Fig. 5. The confusion matrix for testing group 2021-06 Using (a) hybrid models. (b) sound models. (c) clinical model. 

 

 

4.2 Group 2021-07 

The second group contained 102 samples for each 

sound type recorded in July 2021 including 89 

positive samples. Our classifiers could achieve higher 

accuracy of about 92% and detected 84 positive 

samples out of 89 using the hybrid models set 

{breathing-deep, breathing-shallow, cough-heavy, 

cough-shallow, counting-fast, vowel-o, vowel-e, 

clinical information}. While excluding the clinical 

features model, dropped the accuracy by about 6%, 

but the clinical features model alone achieved the 

lowest accuracy as indicated in Table 4. and Fig. 6.   

 

 

Table 4. The best classification results on testing group 2021-07 with Hybrid models combination, sound models combination, 

and the clinical model. 

Type Models ACC AUC 

Hybrid breathing-deep, breathing-shallow, cough-heavy, cough-shallow, counting-fast, vowel-o, vowel-e, 

clinical information 
0.92 0.86 

Sounds breathing-deep, breathing-shallow, cough-heavy, cough-shallow, counting-fast, vowel-o, vowel-e 0.86 0.82 

Clinical clinical information 0.55 0.74 
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(a)                                               (b)                                                (c) 

Fig. 6: The confusion matrix for testing group 2021-07 Using (a) hybrid models. (b) sound models. (c) clinical 

model. 

 

4.3 Group 2021-08 

The next testing group contained the samples 

uploaded in August 2021 and was the smallest group 

compared to other groups with 15 samples only. We 

found that averaging the predictions of hybrid 

combination {breathing-deep, breathing-shallow, 

cough-heavy, vowel-o, clinical information} could 

detect all the positive samples and the negatives 

correctly with an accuracy of 100%. While the sound 

models missed one negative sample to achieve an 

accuracy of 93%. Even the clinical features model 

alone has achieved an acceptable accuracy of 87%. 

We can see all results indicated in Fig. 7 and Table 5. 

Table 5: The best classification results on testing group 2021-08 with Hybrid models combination, sound models combination, 

and the clinical model. 

Type Models ACC AUC 

Hybrid breathing-deep, breathing-shallow, cough-heavy, vowel-o, clinical information 1 1 

Sounds breathing-deep, breathing-shallow, cough-heavy, vowel-o 0.93 0.95 

Clinical clinical information 0.87 0.83 

 

     
(a)                                              (b)                                                (c) 

Fig. 7. The confusion matrix for testing group 2021-08 Using (a) hybrid models. (b) sound models. (c) clinical model. 

 

 

4.4 Group 2021-09 

The last testing group contained 88 samples for each 

sound type collected in September 2021. As expected 

the hybrid models set {breathing-deep, cough-heavy, 

counting-normal, clinical information} achieved the 

highest accuracy 86%, and detected 66 positive 

samples out of 73. While the clinical information 

model alone could achieve an accuracy of 83% and 

detected 60 positive samples out of 73 as indicated in 

Fig. 8 and Table 6 below. 
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Table 6. The best classification results on testing group 2021-09 with Hybrid models combination, sound models combination, 

and the clinical model. 

Types Models ACC AUC 

Hybrid breathing-deep, cough-heavy, counting-normal, clinical information 0.86 0.79 

Sounds breathing-deep, cough-heavy, counting-normal 0.73 0.65 

Clinical clinical information 0.83 0.84 

 

       

(a)                                               (b)                                                (c) 
Fig. 8. The confusion matrix for testing group 2021-09 Using (a) hybrid models. (b) sound models. (c) clinical model. 

 

5 Discussion 

In Tables 7 and 8 Below we summarize the 

classification results for different model types used 

for testing several datasets collected in four months 

from the Coswara dataset [17]. We can see that 

creating hybrid models combination of sounds and 

clinical symptoms could achieve the best 

performance with an average accuracy of 91% and an 

AUC of 88%. Although the clinical model improved 

the overall accuracy, this doesn’t give him an 

advantage over the sound models, because the 

clinical information model alone achieved the lowest 

accuracy and AUC 73%, 78% respectively.  

In Fig. 9 and 10 we can see the line plots comparing 

the accuracies and the AUCs of different models on 

testing the 4 test groups. We can realize that the 

hybrid combination of the sound and the clinical 

symptoms always achieves the best performance 

followed by the sound models.  

Table 7. The averaged accuracy for all testing groups. 

Models 2021-06  2021-07 2021-08 2021-09 Average Accuracy 

Hybrid 0.86  0.92 1.0 0.86 0.91 

Sounds 0.84  0.86 0.93 0.73 0.84 

Clinical 0.67  0.55 0.87 0.83 0.73 

 

Table 8. The averaged AUC for all testing groups. 

Models 2021-06 2021-07 2021-08 2021-09 Average AUC 

Hybrid 0.85 0.86 1 0.79 0.88 

Sounds 0.84 0.82 0.95 0.65 0.82 

Clinical 0.72 0.74 0.83 0.84 0.78 
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Fig. 9. A Comparison between the classification Accuracies achieved by different model combinations while testing the 4 test 

groups.

 

Fig. 10. A Comparison between the classification AUCs achieved by different model combinations while testing the 4 test groups

And based on our results in this study and in [15] We 

can confirm that analyzing the coughs, respiratory 

sounds, and the speech can be very useful to diagnose 

COVID-19 and detect the virus reliably without the 

need for chemical or radiological tests as the 

COVID-19 virus affects the respiratory system and 

the vocal cords. Also, we have introduced the 

importance of using the clinical symptoms besides 

the COVID-9 sounds for creating a more accurate 

COVID-19 detector and a diagnostic tool that relies 

on artificial intelligence and the external symptoms 

of the disease. In Fig. 11 we summarize the whole 

process and the steps that our COVID-19 detector 

uses to detect the virus instantly. At first, the user 

records his coughs, breathing, and speech. Also, he 

provides the clinical symptoms that he feels. Then 

our detector analyses every sound type separately by 

extracting the features from the raw sounds and 

classifying them to predict the COVID status. 

Finally, an ensemble model is used to average the 

predictions of several models and decides whether 

the case is positive or negative 
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Fig. 11. The summary of all steps used by our detector to diagnose COVID-19 using the external symptoms only. 
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6 Conclusion  

In this study, we continued our efforts in the 

diagnosis of COVID-19 using Machine Learning and 

its external symptoms such as cough, respiratory 

sounds, and here we have discussed the importance 

of using clinical symptoms features such as (fever, 

muscle pain, cold, sore throat, asthma, pneumonia, 

and chronic lung disease) for creating more reliable 

detectors and diagnostic tools of COVID-19. Using 

the Coswara dataset that contained 9 different types 

of sounds (cough, breaths, speech, etc..) for each 

volunteer as well as their clinical information labeled 

with their COVID-19 status, we could train 10 

different classifiers with the samples released before 

May 2021. And to evaluate the performance of those 

classifiers in detecting COVID-19, we used more 

samples published in the next 5 months to create 

several testing groups. By testing those groups, we 

found that a hybrid combination of sound models and 

the clinical symptoms model could achieve the best 

performance with an average accuracy of 91%. While 

the sound models are still effective in the long term 

to detect the presence of COVID-19 in the samples 

collected after several months of training those 

models regardless of the changes that occurred to the 

virus. 

 

List of Abbreviations 

COVID-19 Coronavirus Disease of 2019 

WHO The World Health Organization 

RT-PCR The reverse transcription-polymerase 

chain reaction 

AI Artificial Intelligence 

IOT Internet Of Things 

AUC Area Under Curve 

ACC Accuracy 

CNN Convolutional Neural Network 

ResNet A residual neural network 

LSTM Long short-term memory 

SVM Support Vector Machine 

MFCC Mel Frequency Cepstral coefficients 

SEM Standard Error of the Mean 

RMS Root Mean Square 
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 عن طزيق الذكاء الاصطناعي والأعزاض الخارجية للمزض 91المذي لمزض الكوفيذ  أداة تخشيص طويلة

الزكاء الاططٌاػً دّى الحاجح إلً إجشاء اخرثاساخ سشٌشٌح  ذؼروذ ػلى 91-ض هشع الكْفٍذفً ُزا الثحس ًقذم طشقٌا الوسرخذهح فً ػول أداج لرشخٍ

ً ذظف الأػشاع الخاسجٍح للوشع هثل الكحح، ّأطْاخ الجِاص الرٌفسً ّتؼغ الأػشاع ػي طشٌق هشاقثح ّذحلٍل الثٍاًاخ الرّرلك أّ كٍوٍائٍح  

أى ٌرن اسرخذاهِا فً الرجوؼاخ ُْ الِذف هي أداج الرشخٍض ُزٍ  ّالسشٌشٌح الأخشي هثل اسذفاع دسجح الحشاسج  ّ الثشد ّ احرقاى الضّس ّغٍشُن. 

الوثكشج للوشع ّالحذ هي اًرشاس الفاٌشّط ّ ذْجٍَ الحالاخ الوشرثَ تِا إلً الكشف السشٌشي الثششٌح الكثٍشج لرْقغ الحالاخ الوظاتح فً الوشاحل 

 ّالوخرثشي.

 ّتٍاًاخ 91-الكْفٍذّلثٌاء ُزٍ الأداج قوٌا تاسرخذام الؼذٌذ هي ًوارج الرؼلن الؼوٍق الرً ذِذف إلً ذحلٍل الثٍاًاخ الرً ذن جوؼِا هي حالاخ هؤكذج توشع 

 ء تغشع الرؼلن هٌِا ّاًشاء هظٌفاخ ٌوكٌِا فٍوا تؼذ ذْقغ الحالاخ الإٌجاتٍح ّالسلثٍح هي الأػشاع الخاسجٍح فقط.أخشي لأشخاص أطحا

ػي ّجْد  ، كاًد قادسج ػلً الكشفّذن جوؼِا هثكشاً فً الؼام الواػً ػٌٍاخ طغٍشج ًا اى الٌوارج الرً ذن ذذسٌثِا ػلىّتؼذ الرجاسب الؼولٍح ّجذ

ػٌٍح  393 % ػٌذ الكشف ػلى19ٍق دقح ذظل إلً . كوا اسرطاػد ًوارجٌا ذحقالٌوارج اخ الرً ذن جوؼِا تؼذ شِْس هي ذذسٌة ُزٍالفاٌشّط فً الؼٌٍ

هشع الكْفٍذ تشكل فْسي  لرشخٍض فؼالٍح أداج الرشخٍض الوقذهح فً ُزا الثحسزٍ الٌوارج، ُّزا تذّسٍ  ٌؤكذ ذن جوؼِا تؼذ شِْس ػذج هي ذذسٌة ُ

 الأػشاع الخاسجٍح  فقط ّتغغ الٌظش ػي الرحْساخ الرً ذحذز للفاٌشّط. ّسشٌغ اػرواداً ػلى


