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 The self-balancing two-wheeled vehicle is a practical realization of the well-established 

control benchmark of the inverted pendulum system. Despite the sophisticated dynamics 

and kinematics of the inverted pendulum system, it has acquired great interest in real-life 

applications starting from Segway and hoverboards to the self-balancing wheelchair. These 

applications benefit from the dynamical structure that provides high maneuverability 

within narrow spaces. However, the system complexity regarding the high nonlinearity and 

instability requires accurate models for model-based control of the balancing and motion 

planning control objectives. This work addresses the modeling and the parameters 

estimation of a lab-scale version of the self-balancing two-wheeled vehicle. First, a 

nonlinear dynamical model based on LaGrange kinematics is developed. Then, real-time 

datasets for closed-loop operations are acquired for offline optimization. Finally, an 

optimization problem is formulated and solved for the parameter estimation through a 

decoupled block-by-block approach. The obtained grey-box model is validated for reliable 

and accurate fitting of the real system. The obtained model was able to simulate the real-

time collected data with reasonable meaningful estimated parameters. 
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1. Introduction 

The two-wheeled self-balancing robot (TWSBR) is a 

naturally unstable, nonlinear system with two independently 

driven wheels mounted on each side of the robot. The robot's 

center of mass is located above the wheel axis. Despite its 

sophisticated dynamics, instability, and nonlinearity inherited 

from the inverted pendulum system, this robot finds its 

application in the design and development of control systems for 

transportation in short distances inside cities such as Segway and 

hoverboard. It can be considered an environment-friendly 

mobility solution since it does not produce pollution while having 

high flexibility and maneuverability in narrow spaces. 

Although the TWSBR by nature is an unstable nonlinear 

system, several investigations and studies have been conducted to 

model and control this system.  An accurate dynamical model is 

required for a lot of model-based control algorithms such as 

fuzzy logic control [1], adaptive control [2, 3], and sliding mode 

control [4]. The TWSBR mathematical model can be obtained 

using three possible different approaches. The first one is the 

Newtonian approach [5, 6] where equations of motion derivation 

is a complicated process, but it gives a natural understanding of 

the robot movement and relations between forces. The second 

approach is the LaGrange approach [7, 8] which is the most 

popular method with multi-body systems. In the Lagrange model, 

equations of motion can be derived as a function of some 

generalized coordinates considering the potential and kinetic 

energy of the system [9, 10]. The last one is Kane’s method [11, 

12]. Unlike the Newtonian method, the interactive forces do not 

have to be found. Instead, a generalized force can be determined 

by the method of partial velocities along generalized coordinates.  
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For the mathematical model to accurately simulate the real-time 

implementation of the TWSBR. Three approaches can be found 

to obtain the model [13]: 

White-box modeling:  Assuming a complete knowledge of the 

systems equations and parameters. 

Black-box modeling:  Assuming no previous knowledge of 

systems dynamics. Experimental approaches are carried out to 

extract the input-output transfer function. 

Gray-box modeling: Assuming some knowledge of the 

system dynamics while the model parameters need to be 

estimated. 

For the white-box modeling method, several studies were 

carried out with complete knowledge of both the system 

equations and parameters. In [7], the LaGrange method for the 

system model is applied by separating it into two parts: The 

mechanical part representing the robot body, and the actuator part 

representing the DC motor and the wheels. The model also takes 

into consideration the energy dissipation of both wheels as they 

roll along the way and the wheel-surface friction. With some 

linear approximations, it was managed to use the extracted model 

for a linear–quadratic regulator (LQR) and full state feedback 

controller. In [14], a black-box model was obtained by using 

some closed loop techniques with artificial neural networks. The 

feedforward neural network was able to predict the tilt angle with 

a very low mean square error (MSE). Ref [15] considers two 

phases for system identification. First, the system is considered a 

multi-input multi-output (MIMO) system where the currents for 

both motors are the inputs, and the velocities of both wheels are 

the output. Then, the system is seen as a multi-input single-output 

(MISO) where the velocities of both wheels (the output of the 
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first phase) are inputs and the tilt angle of the robot is the output. 

Different model structures were compared such as Autoregressive 

(AR), Autoregressive Moving Average with Exogenous Inputs 

(ARMAX), Box-Jenkins (BJ), and Output-Error (OE) as a linear 

model, and two nonlinear model structures Wiener and 

Hammerstein. It was concluded that Wiener nonlinear model has 

the best performance for the first phase with saturation. A 

wavelet network was suggested to obtain the second phase model. 

For the gray-box modeling method, ref [16] applied a parameter-

dependent time-invariant system with different operating points 

and scheduled parameters based on the corresponding operating 

point. It was conducted for a rotary inverted pendulum with 

considering the numerical condition into account to determine the 

model structure. 

The motivation of this paper is to develop a model for a lab-

scale version of the TWSBR since it is a challenging platform to 

be controlled with a wealth of industrial and practical 

applications. This paper is structured as follows. The hardware 

setup is described in Section 2. Then, a mathematical model is 

developed using LaGrange kinematics in Section 3. In Section 4, 

an empirically tuned stabilizing PID controller is designed to 

acquire experiment data. Real-time optimal parameters estimation 

is carried out and evaluated in Section 5 while Section 5 

summarizes conclusions. 

2. Hardware construction and configuration 

2.1. Mechanical design and construction 

The mechanical construction of the robot is separated into two 

main subsystems. Firstly, the rotational subsystem consists of two 

actuated wheels driven by two geared DC motors. Secondly, the 

upper body subsystem consists of three acrylic 3D printed plates, 

the lower 5mm plate is used to connect the DC motor with the 

upper body, and the second and the third 3mm plates are used to 

mount the embedded electronics. Figure 1 shows the assembled 

version of the robot. The dismissions of the robot chassis (length, 

width, height) are 21.6 x 6.8 x 13.2 cm with a 6.2 cm. wheel 

diameter. The center of mass of the upper body is located above 

the wheel axis and the robot has only two contact points with the 

surface. Because of this mechanical structure, the upper body acts 

as a pendulum during the translation motion of the robot. 

2.2. The embedded system 

The TWSBR is built around a small, low-cost, and user-

friendly Arduino Uno Rev 3 board which has an ATmega328P 

microcontroller. A balance shield mounted over the Uno board 

contains the following: 

 MPU-6050 sensor: which is, a six degrees of freedom 

(DoF) inertia measurement unit (IMU) that has an 

accelerometer and gyroscope. The MPU-6050 is 

interfaced with the Uno board by an inter-integrated 

circuit (I2C) bus to provide the measurements of the 

acceleration and the angular velocity. Furthermore, a 

Kalman filter is applied to the raw data collected from the 

MPU-6050 to estimate the robot tilt angle. 

 L298P: dual H-bridge that drives the two Dc motors. 

 LED indicator: shows which motor pins are on or off. 

 Motor interface: that connects the two DC motors to the 

L298P H-bridge. 

Figure 1: The TWSBR assembled 
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 The actuators are two high-torque, high-speed DC motors 

with a gear ratio of 43.8 and two-channel incremental encoders 

with 16 counts per revolution (CPR) for the motor shaft and 700 

CPR for the gear shaft. The motors are driven by a pulse width 

modulation (PWM) signal supplied to the H-bridge. The 

embedded electronic system is powered by a 12V – 1A) charger 

connected through the power input pins. A complete Hardware 

configuration is depicted in 

Figure 2. 

Figure 2: The TWSBR hardware architecture 

3. Mathematical model 

Accurate modeling with reasonable complexity is essential for 

model-based control. Some of the model mechanical and 

electrical parameters are obtained from the datasheets while 

unknown parameters are experimentally estimated using real time 

dataset collected from the robot [8]. 

 

Figure 3: Side and plane view of the TWSBR 

Figure 3 shows the kinematic variable for the robot motion 

  ̇   ̇ indicates the indicates the robot angular displacement for 

the wheels while    indicates the robot tilt angle of the upper 

body. ̇ indicates the mean value for   ̇   ̇ so that  

 ̇  
  ̇    ̇
 

  ( )  

While  ̇ is the change in the yaw angle of the robot to indicate 

the robot direction as: 

 ̇  
 (  ̇    ̇)
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 ̇    ̇ is the linear speed of the robot. The robot parameters are 

stated in Table 1. As indicated in Figure 3, the coordinates of the 

intersection of the two axes   and   (points out of the page) 

namely       can be obtained as: 
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Likewise, the coordinates of both wheels and the upper body 

can be obtained as follows:  
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The equations of motion of the system can be derived using 

the LaGrange approach [17]: 

 

  

  

   ̇
 
  

   
               (  )  

where   (          )
  is selected to be the generalized 

coordinates.   is known as the Lagrange function and is defined 

as the difference between the kinetic and potential energy, 

      where   is the robot's total kinetic energy which is the 

sum of both wheel and upper body kinetic energies        . 
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  is the robot's total potential energy which is the sum of both 

wheel and upper body potential energies        . The 

kinetic energy of both wheels can be written as: 
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where     is the wheel's moment of inertia. The upper body 

kinetic energy is given by: 
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The robot's potential energy is given by: 

          (        )  (  )  

where   is the gravitational acceleration. 

   [        ]
  is the generalized external forces vector in 

equation (10) which is the difference between the torques 

generated by the motors and the modeled dissipation due to 

friction. The motor armature current can be described by the 

following equations [18]: 

 ̇  
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where    is the motor input voltage   [     ]
  and    is the 

motor armature currents   [     ]
 . Equation (12) describes the 

relationship between the input voltages and the armature current. 

Since the external torques are proportional to the current equation 

(13) describes the relationship between the armature current and 

the motor external torque. 

       [
  
  
    

]    (  )  

where    is the motor external torques. Furthermore, the modeled 

friction is composed only of the viscosity friction between the 

wheel and the surface equation (14) gives the modeled friction. 
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]  ̇  (  )  

The overall generalized external forces can be described as 

       . 

By evaluating (10) the overall system model can be written as: 
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where  ( )  is  a 3-by-3 symmetric and positive definite inertia 

matrix and  (   ̇) is 3-by-1 column vector that describes the 

potential energy terms. A detailed description of both  ( ), 
and  (   ̇) is given as follows [8]: 
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The state-space representation of the model of the overall 

system can be stated as follows: 

 ̇( )   
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Table 1: TWSBR parameter estimation 

Symbol Parameter name Initial values [SI Unit] 

  Wheel radius            

   Wheel mass         

  Distance between the center of 

gravity of the upper body and 

wheel axle 

         

   Mass of the upper body      

  The between the two wheels           

   Moment of inertia of the robot 

about the   axis 

           

   Moment of inertia of the robot 

about the K axis 
           

  Gear ratio       

   The inertia of the rotor           

  The rotor resistance       

  The rotor inductance           

   Torques constants            

   Back-EMF constants            

  Viscous friction of the motor           

   Viscous friction of the wheel           
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4. Optimal parameter estimation 

4.1. Dataset acquisition 

Since the TWSBR is unstable, a stabilizing controller is 

required for the offline dataset acquisition to estimate the model 

parameters. An empirically tuned PID is implemented to stabilize 

the robot. With the help of the Arduino support package, and the 

Embedded Hardware coder for Simulink the controller is realized 

using Simulink blocks. The control algorithm and the real-time 

model run with a sample time of        . The tunned controller 

is mainly used for stabilizing the robot for the offline data set 

collection not to fully control the robot. The only design 

requirement for the controller is to stabilize the robot around the 

vertical equilibrium point. A stabilizing controller can be 

obtained through the following algorithm. 

1. Start by setting the proportional gain        , setting both 

       . The robot is unable to recover with very low   . 

2. Increase    by a factor of 10 until         . The robot 

begins to jitter too much. An acceptable compromise 

between the two values is       where the robot can 

balance with a little external help.  

3. Begin to tune    value by setting the          
       . The robot now can balance with less aggressive 

recovery behavior. 

4. Increasing the    will make the robot jitter again. A suitable 

value is         can make the robot recover with less 

aggressive behavior.  

5. Finally, tune the    parameter to remove jittering and help 

the robot to balance with a smoother behavior. The tuned 

value is     .  

The real-time model was compiled and deployed using the 

Simulink embedded coder and hardware support packages.  

 

Figure 4: TWSBR closed-loop Simulink model for real-time deployment 

  Figure 4 indicates the closed-loop model for the TWSBR 

(overall model). While Figure 5 indicates a detailed 

implementation of the stabilizing controller.  

There exist three points marked with red in Figure 4. The 

data set is collected between the input of the TWSBR (input 

voltage- point B), and the robot states vector that includes tilt 

angle, angular velocity, wheel speed, and wheel displacement 

(point C). While point A indicates the input of the excitation 

signals. Several well-known signals are used to perturb the robot 

and collect the robot states. The control signal generated by the 

stabilization controller indicated by the output port (1) named 

PWM in Figure 5 is the pulse width modulation signal supplied 

to the H-bridge through the Arduino analog pins. 

 

Figure 5: Detailed implementation of the stabilizing controller 

4.2. Parameter estimation 

The numerical simulation of the mathematical model was 

conducted using the MATLAB Simulink model. Where the state-

space model in (21) is developed with the help of Simulink S-

function. Figure 6 shows the developed Simulink model. 

Four experiments were carried out to estimate the model 

parameters. One experiment is used for model parameter 

estimation, while the other three were used for model validation. 

 

Figure 6:Numerical simulation of state-space representation using 

Simulink S-function for offline estimation. 

After dataset acquisition and with the help of the Simulink 

parameter estimator app, an optimization problem is formulated. 

The active-set algorithm focuses on solving Karush-Kuhn-Tucker 

(KKT) equations. The KKT equations are necessary conditions 

for optimality in a constrained problem. For a general 

optimization problem (GP) to find a set of design parameters 

  (              ) is stated as follows: 

    ( )  (  )  

Subject to  

  ( )              (  )  

  ( )                (  )  

         (  )  
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Where   is the vector of length   design parameters,  ( ) is the 

objective function, and  ( )  is a vector of length m contains the 

equality and inequality constraints. 

While the KKT equations can be stated as follows: 

  (  )   ∑    

 

   

  ( 
 )     (  )  

                         ( 
 )              

                    

The cost function was chosen to be the linear sum of squared 

errors (SSE) which can be stated as follows: 

     ∑(      ̂)
 

 

   

 

where    is the real-time data points and    ̂ the model simulation 

data points. To have physically meaningful optimal estimates, the 

estimated parameters were constrained to the values in Table 2. 

While the convergence of the algorithm is in Figure 8 showing a 

scaled version of the error function indicating how the cost 

function decreases as the number of iterations increase the 

algorithm converged in twelve iterations. All model parameters 

were chosen to be estimated to give the model the ability to reach 

a local minimum without overfitting the collected data. In 

addition, the sensitivity analysis for all parameters is shown in 

Figure 7 indicating the correlation of each estimated parameter to 

affect the simulation model. 

 

Figure 7 Sensitivity analysis for model parameters 

Figure 9 shows the first experiment where the model is excited 

by a square wave with an amplitude of 8 and frequency of 

       . Figure 10 shows the model simulation for the tunned 

parameters, as it can be seen the model is accurately fitting the 

tracking the real-time data after the parameters are tuned. Table 

3shows the tuned parameter values. Consequently, the model is 

further validated using the other three experiments. Figure 11 

shows the validated model doing reasonably good performance 

simulating the real-time measurements. Figure 12 shows the 

model response to a doublet function the model was able to track 

the excitation signal. While Figure 13 shows the model response 

to a sine stream signal with different frequencies          and 

amplitudes            . 

 

Figure 8 Convergence behavior of the cost function 

Table 2 Estimated parameters constrains 

Symbol 
Minimum values [SI 

units] 

Maximum values [SI 

units] 
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Table 3: TWSBR tuned parameters 

Symbol Parameter name Values [SI Unit] 

  Wheel radius          

   Wheel mass        

  Distance between the center of 

gravity of the upper body and 

wheel axle 

       

   Mass of the upper body        

  The between the two wheels        

   Moment of inertia of the robot 

about the   axis 

       

   Moment of inertia of the robot 

about the K axis 
        

  Gear ratio       

   The inertia of the rotor            

  The rotor resistance        

  The rotor inductance            

   Torques constants         

   Back-EMF constants         

  Viscous friction of the motor            

   Viscous friction of the wheel         

 

5. Conclusion 

The TWSBR is an unstable system that has many academic 

and industrial applications. Low-cost Lab-Scale TWSBR was 

constructed using Arduino Uno REV3 embedded board. Then, a 

mathematical model was developed using the LaGrange 

kinematics. A dataset is collected from the robot stabilizing in a 

closed-loop configuration with an empirically tuned PID. An 

optimization problem is formulated and solved to estimate the 

model parameters such that the model matches the real-time 

measurement accurately. The estimated parameters were 

meaningful for the physical system such that the estimated 

parameters were close the measured parameters. 

 

Figure 9: Model simulation with initial set of parameters 

 

Figure 10: Model simulation with tuned parameters 
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Figure 11: Model Response to a sin wave signal with the tuned 

parameters 

 

Figure 12: Model response to a doublet input with tuned parameters 

 

Figure 13 Model response to a Sin stream input with tuned parameters 
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