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1. Introduction  

It is commonly recognized that forecasting wind energy 

accurately can help mitigate the hazards associated with high 

wind energy penetration. Historically, wind energy forecasting 

has produced deterministic forecasts (i.e., point forecasts). 

Numerous academics have concentrated on minimizing 

predicting error using various statistical or physical models [1]. 

More precisely, point projections indicate the anticipated value of 

future wind energy. Wind power in the future, on the other hand, 

is a random variable with a probability density function (PDF), 

and point predictions nearly invariably omit this random 

variable's uncertainty information. This restricts the use of point 

forecasts in the investigation of the security and stability of 

electricity systems. The computational study of demonstrated that 

the developed hybrid models yield better performance contrast 

with those of other models involved in terms of both (wind speed, 

pressure, and temperature) deterministic and probabilistic 

forecasting. [2]. 

These categories have underlined the significance of forecast 

uncertainty and its facets for forecasters and decision-makers 

alike. Consequently, they have been increasing their efforts in 
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uncertainty quantification (UQ) for the planning of wind farms 

(e.g. [3]), wind farm performance. (e.g. [4], [5]) and its 

application to operational forecasting and marketing practices [6], 

[7], [8], [9], [10]). However, many end-users' awareness and 

understanding of probabilistic forecasts, as well as their 

application of UQ to such forecasts, are not (yet) widespread 

enough to support uncertainty mitigation and improved use of 

uncertainty in WPF. (See e.g. [11], [12]). 

According to the Egyptian National Renewable Energy 

Authority (NREA), Egypt generated approximately 1385 MW of 

wind energy in 2022 and its primary wind farm, Wind farms 

include 542.3 MW in Zafarana, 580 M W in Gabal El-Zeit, and 

250 MW in Ras Ghareb. The Ministry of Electricity & 

Renewable Energy aims to maximize utilizing renewable energy 

in Egypt to reach about 20% of the total peak load by 2022, and 

up to 42% of the total generated energy by 2035, by adopting 

policies that 

encourage private sector investments in electricity production 

projects from renewable energies (wind and solar). [13]: 

1. Egypt's wind resource is one of the best in the world due to 

its high and consistent wind speed. 

2. Sufficient land is available at low economic rates. 

 A B S T R A C T 

 Wind forecasting has gained considerable interest due to the abundance of renewable energy and the rapid 

advancement of wind energy extraction technologies. Wind forecasting is the process of extracting one or more 

features from time series data to increase prediction accuracy. The various forecasting models for wind speed and 

power include physical, statistical, computer, and hybrid models. The steps involved in forecasting wind speed and 

energy are preprocessing the raw data, feature extraction, and prediction. In this work, hybrid model prediction 

algorithms are combined to obtain better forecasting accuracy and maintain model efficacy and simplicity. The 

proposed model combines either autoregressive or autoregressive integrated moving average with cumulative 

Weibull distribution. The results demonstrated an improvement in short- and medium-term prediction when 

compared to other computational techniques such as Weibull, (AR), and autoregressive integrated moving average 

(ARIMA). Numerical error evaluation approaches such as Mean Absolute Percentage Error Mean Square Error, and 

Mean Absolute Error were used to forecast the model's correctness. The results indicated that the hybrid model's 

projected error is signification less than that of the AR and ARIMA models independently. 
Key words: Wind forecasting, renewable energy, data preprocessing, Weibull, Autoregressive, and Autoregressive moving 

average. 

ABBREVIATIONS: 

AR Autoregressive MAPE Mean Absolute Percentage Error 

ARIMA Autoregressive Integrated Moving 
Average 

ENREA Egyptian National Renewable Energy Authority 

ARMA Autoregressive Moving Average MSE Mean Square Error 

CDF Cumulative Distribution Function MAE Mean Absolute Error 

NWP Numerical Weather Prediction RMSE Root Mean Square Error 

PDF probability density function MPF Main Probabilistic Features 

MA Moving Average Std Standard Deviation 

WPF wind power forecasting  Var Variance 
UQ uncertainty quantification K, C Two factors of Weibull distribution   
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3. Demand for electricity and other non-renewable energy 

sources is increasing significantly. 

Forecasting is generally classified into several categories 

based on the time period involved: very short-term forecasting (a 

few seconds to 30 minutes ahead), short-term forecasting (30 

minutes to several hours ahead), medium-term forecasting 

(several hours to one week ahead), and long-term forecasting 

(several hours to one week ahead) (from 1 week to 1 year or 

more). 

In many cases, a substantial volume of data is required during 

the testing phase, as well as the development of adequate 

feasibility studies for future expenditures. 

Numerous statistical methods and clever algorithms for 

deterministic wind power forecasting are described in the 

literature. The ARIMA model has been used in conjunction with 

the persistence approach to forecast short-term wind energy. [14]. 

Numerical weather prediction (NWP) is always used in 

conjunction with a physical model to improve forecasting 

accuracy [15]. 

The recent approaches are classified as follows: (i) physical 

algorithms, (ii) traditional statistical algorithms, (iii) spatial 

correlation algorithms, and (iv) machine-learning algorithms. 

Physical algorithms primarily make use of meteorological 

environment data, which includes information on temperature, 

speed, density, and topography. 

The primary objective of short-time wind speed forecast 

correction with the aim of improving decision support systems 

for traffic control in dangerous wind situation is also the problem 

of wind farm power prediction. For example, in the study [16] 

about wind farm NWP wind speed correction methods, measured 

time series were decomposed into different bands by wavelet 

multi-resolution analysis. Correction premise was verified using 

moment correlation coefficient, and then the linear correction 

method was used to stationary NWP wind speed. [17]. For 

example, Cheng et al. [18] combined current numerical weather 

forecast data with assimilation, with the result that prediction 

accuracy is significantly increased. Nonetheless, given the 

disadvantages associated with short-term wind speed forecasting, 

as well as the high cost in terms of computing time and resources, 

it is evident that this category is unsuitable for wind farm short-

term wind speed forecasting. 

Statistical methods generally refer to the application of 

mathematical statistics, probability theory, and stochastic 

processes to forecasting problems. They typically use a large 

amount of historical data for model training or error fitting, 

establish a mapping relationship between input variables and 

output variables, and predict the future wind power value (or 

interval of such). Established techniques include exponential 

smoothing, auto-regressive moving average (ARMA) models, 

and auto-regressive integrated moving average (ARIMA) models. 

These can be applied to both deterministic and probabilistic 

forecasting [19]. The authors suggested a modified ARIMA 

method for predicting wind speed, and the results indicate that it 

is more accurate than the AR model. However, statistical 

algorithms continue to have some flaws. 

To begin, the majority of statistical techniques assume a 

normal distribution for time series, which is not necessarily the 

case for wind speed time series. Second, these models have a 

linear correlation structure, which results in low accuracy when 

nonlinear wind speed data is used. To address these issues, spatial 

correlation methods are used that take into account the 

geographical link between wind speeds measured at various 

locations. For example, developed a unique wind speed 

prediction model based on a wavelet transform and a spatio-

temporal technique that outperformed existing benchmark models 

in terms of short-term wind speed forecasting. However, in the 

interim, this model [19]. 

2.  METHODOLOGY AND DATA SOURCE 

To determine an ARIMA model's adaptability, we must first 

ensure that the stationary and invertibility assumptions are met. 

While all ARIMA (p, d, 0) models are stationary, in order to 

determine whether the model was chosen correctly, we must 

examine whether the time series satisfy the other criteria of 

invertibility. Due to the fact that ARIMA (p, d, q) models are 

invertible and dependent on the parameter values, they may not 

be stationary. As a result, the model is represented in a variety of 

ways. That is why it is prudent to seek out the simplest 

representations for wind speed estimation. 

Granger and Andersen proposed a broader definition of 

inversion in 1978, which they applied to linear, nonlinear, and 

bilinear models [21]. As can be shown, some non-linear models 

are not invertible, however this criterion can be satisfied by 

combining them with another model. To describe the criteria for a 

general Movable Average (MA) process of order q, the input data 

must be invertible (accordingly, process borderline should be 

non-invertible). Acceptability conditions must be used to refer to 

the conditions. 

The dependency can be found on the magnitude of the final 

moving average parameter,   . If |  | < 1, the process is not 

acceptable. The process should reach the conditions |  | = 1 for 

any particular q meaning and is expected to run smoothly. If |  | 

< 1, the conditions need to be established. Simultaneously, the 

stationarity of autoregressive processes is examined. In 2008, Ojo 

compared subset autoregressive integrated moving average 

models with full autoregressive integrated moving average 

models [22].  

The purpose of this work is to conduct a trial to determine the 

most efficient autoregressive integrated moving average (ARIMA) 

model structure that achieves the lowest errors when comparing 

forecast and real-time series scenarios. The research was 

conducted to anticipate daily wind speeds in Hurghada for June, 

July, August, and September 2021 using this model. It is chosen 

to evaluate the model's predicting performance using MAPE, 

RMSE, and MAE (mean absolute error). 

2.1 Time series analysis with ARIMA models  

The majority of modeling techniques, including Box-Jenkins 

[23], are applicable to stationary time series. ARIMA models are 

a class of time series that are based on statistical models and are 

frequently used for short-term forecasting. A typical ARIMA 

model, represented by ARIMA (p, d, q), is as follows: 
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This equation can be written as: 

                                                     

where   is the constant term (i. e. the mean of the underlying 

stochastic process),    is the i-th autoregressive parameter,    is 

the j- the moving average parameter,     is the error term at time 

t, and    is the value of the wind speed observed at the time    

[18]. The autoregressive parameters represent the lags of 

differenced series, and the moving average terms show the lags of 

the prediction errors. It is possible that the time series data is non-

stationary (or seasonal), and in this case it needs to be differenced 

to become stationary [22]. The result is an “integrated” version of 

a stationary series, and the model becomes an ARIMA model, 

denoted by ARIMA (p, d, q), where p, d, and q are the numbers 

of autoregressive terms, non-seasonal differences, and lagged 

prediction errors, respectively. Clearly, if d is zero, the ARIMA 

model becomes an ARMA (p, q) model. If both d and q are zero, 

then the ARIMA model becomes an AR (p) model. If both d and 

p are zero, then the ARIMA model becomes a MA (q) model.[23] 

       In this study, we employ the general procedure of ARIMA, 

AR and Weibull distribution modelling for the prediction of wind 

speed. Based on the data obtained, a suitable model structure and 

model parameters will be obtained. 

2.2 Model precision analysis 

            The root mean-square error (RMSE), mean absolute 

percentage error (MAPE) and mean absolute error (MAE) are 

adopted to evaluate the prediction accuracy of the approaches 

[24]. MAE is a common measure of the forecast error in time 

series analysis, which measures the average magnitude of the 

errors in a set of forecasts: 
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where n is the number of observations in the total evaluation 

period,    is the value of observation at time  , and    is the 

forecast value.  

Equation (3) shows that MAE is the average over the absolute 

values of deviations between the forecast and the corresponding 

observation [18]. MAPE is calculated as the average absolute 

percentage error: 

     
 

 
∑|

{(     ))

  
|

 

   

                                            

      As seen in equation (4), the main purpose of MAPE is to 

show if the data is stable (variation is small). That is why MAPE 

is important in wind power prediction. 
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       Equation (5) indicates that RMSE is a quadratic scoring rule, 

which measures the average magnitude of the error [24]. The 

difference between forecasts and corresponding observed values 

are squared, summed, and then averaged over the sample number. 

Finally, the square root of the average is taken. Since the errors 

are squared before they are averaged, RMSE gives relatively high 

weights to large errors. This means RMSE is most useful when 

large errors are undesirable. 

2.3 Wind data 

         Meteorological data was received from weather 

underground site. They can be denominated as all-Hurghada city 

averages. All variables are presented as hourly data. The 

investigation period covers the period of 2021. Real data from 1
st
 

June 2021to 29
th 

September 2021 and forecasting data from 29
th

 

September to 2
nd

 October 2021. for all experiments. 

        The RMSE, MAE, and MAPE criteria were used to compare 

actual and forecasted results for two days+ period (53hr). For 

ARIMA and AR models, the forecasted data calculated for three 

different sample size, small size up to 400 sample (200 and 400 

used), medium size up to 1500 sample and large size for more 

than 1500 sample (2900 used).  

         And the number of samples divided is a smaller number of 

samples (200, 400), a medium number of samples (1000 and 

1500), and a large number of samples (2900). and calculate the 

error in predicted values as the number of samples increases. 
because with increase the numbers of samples increase the error. 

       Different forecast errors are shown after 53 hours in two 

models. When the ARIMA (12, 0, 4), and AR (12,0,0) model is 

selected, the input data period (200,400,1000,1500, and 2900) 

should be analyzed. to show the main results of analyzed input 

periods. Errors made from the beginning until the end of the 

period can reach 30% of the worst accuracy of forecast values, 

especially in the last analyzed period. As mentioned before, to 

find the best model 

structure and input periods, the MAE, RMSE, and MAPE were 

used. Each error shows different changes in analyzed data. It is 

clear that the fifth period causes at the highest RMSE errors in 2 

models, and the first input period is the best. Moreover, in the 

second addition more error, the prediction of the first input period 

is better than the prediction of the second, but the errors increase 

with the number of entries of the model. 

        models ARIMA (12,0,4) and AR (12,0,0) show that RMSE 

and MAE errors have very similar results. The 53-hour (two 

days+) actual and predicted wind speed values of 

(200,400,1000,1500 and 2900) were analyzed. The difference in 

error value was the lowest between I and II input periods in the 
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beginning of the forecasted 53 hours ahead. However, for 53-

hour wind speed prediction, we received the lowest RMSE and 

MAE errors when the model was trained. 

3. EXPERIMENTS AND RESULTS 

        The research consists of two parts: in the first model 

used the ARIMA, AR model individually and in the second 

model used a hybrid with Weibull distribution model. 

Historical 
WIND DATA

MANY 
DIFFERENT 
SAMPLES 

53 Sample 
predicted 

Wind speed

FORECASTING 
WIND DATA

AR(12,0,0)
ARIMA(12.0.4)

 

Figure 1 explain first model used the ARIMA, AR model individually. 

In Figure 1 The model in the illustration employs Arima (12,0,4) 

and AR (12,0,0). With five alternative sample sizes 

(200,400,1000,1500,2900) historical data entered the ARIMA 

(12.0.4) and AR (12,0,0) models, to predict wind speed and 

compare forecasting data with real data for 53 samples (two 

days+). 

Historical 
WIND DATA

FORECASTING 
WIND DATA

AR(12,0,0)OR
ARIMA(12.0.4)

&WEIBULL 
DISTRUBUTION

 

Figure 2 explain the second model used a hybrid model with Weibull distribution. 

In Figure 2 The model in the figure employs an ARMIA (12,0,4) 

hybrid with a Weibull distribution. and the AR (12,0,0) hybrid 

with the Weibull distribution. Input historical data and use 5 

samples (200,400,1000,1500,2900) into the Arima and AR model 

with fixed order ARIMA (12.0.4) and AR (12,0,0), predict wind 

speed and compare forecasting data with real data for 53 samples. 

at five samples. 

3.1 model-I: 53-Hrs Ahead Based on Autoregressive 

moving average. (12,0,4). 

Historical 
WIND DATA

MANY 
DIFFERENT 
SAMPLES 

53 Sample 
predicted 

Wind speed

FORECASTING 
WIND DATA

ARIMA(12.0.4)

Figure 3 explain first model used the ARIMA for all samples 

(200,400,1000,1500 and 2900) and fixed orders (12,0,4). 

In Figure 3 The model in the illustration employs ARIMA 

(12,0,4), Input historical data and use 5 samples 

(200,400,1000,1500,2900) into the Arima and AR model with 

fixed order ARIMA (12.0.4) and AR (12,0,0), predict wind speed 

and compare forecasting data with real data for 53 samples. at 

five samples. 

In Figure 4 using the ARIMA model (12, 0, 4), and 200-hour 

sample input before the 53 sample output forecasts, wind speed 

predictions were made for the next 53 hours (2.2 days). Error 

computed, RMSE, MAPE, MSE. 

 
Figure 4 ARIMA (12,0,4) With 200 samples and 53-hrs forecasting. 

Table 1: ARIMA (12,0,4) With 200 samples and 53-hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 6.3595 0.0044 2.0852 0.2962 4.3481 

 

In table 1 the first sample is 200 hours. This indicates that the 

data from September 20 to 29, 2021 in the ARIMA model (12,0,4) 

to predict wind speed in the autumn season. The forecasted wind 

speed is close to the real wind speed and the error is 

approximately 0.0044 m/s. MAPE is approximately 0.3. It is the 

best model for short term forecasting. 

In Figure 5 using the ARIMA model (12, 0, 4), and 400-hour 

sample input before the 53 sample output forecasts, wind speed 

predictions were made for the next 53 hours (2.2 days). Error 

computed, RMSE, MAPE, MSE. 
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Figure 5 ARIMA (12,0,4) With 400 samples and 53-hrs forecasting. 

Table 2: ARIMA (12,0,4) With 400 samples and 53-hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 5.9479 0.4160 1.3347 0.20 1.7814 

In table 2 the second sample is 400 hours. This indicates that the 

data is from September 11 to 29. 2021 must be used in the 

ARIMA (12,0,4) form for the Autumn season. The forecasted 

wind speed is close to the real wind speed and the error is 

approximately 0.4160 m/s. The error rate increases by 94% when 

the input period is doubled MAPE is approximately 0.2. 

In Figure 6 using the ARIMA model (12, 0, 4), and 1000-hour 

sample input before the 53 sample output forecasts, wind speed 

predictions were made for the next 53 hours (2.2 days). Error 

computed, RMSE, MAPE, MSE 

Figure 6 ARIMA (12,0,4) With 1000 samples and 53-hrs forecasting. 

Table 3: ARIMA (12,0,4) With 1000 samples and 53-hrs forecasting 

Real data forecasting error RMSE MAPE MSE 

6.3639 6.4197 -0.0558 1.3347 0.20 2.7814 

In table 3 the third sample is 1000 hours. This indicates that the 

data is from august 18 to September 29, 2021. used in the 

ARIMA (12,0,4) form for the Autumn season. The forecasted 

wind speed is great than the real wind speed and the error is 

approximately -0.0558 m/s. MAPE is approximately 0.26. 

In Figure 7 using the ARIMA model (12, 0, 4), and 1500-hour 

sample input before the 53 sample output forecasts, wind speed 

predictions were made for the next 53 hours (2.2 days). Error 

computed, RMSE, MAPE, MSE. 

 

Figure 7 ARIMA (12,0,4) With 1500 samples and 53-hrs forecasting. 

Table 4: ARIMA (12,0,4) With 1500 samples and 53-hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 5.1305 1.2334 1.8951 0.26 3.5915 

In table 4 the fourth sample is 1500 hours. This indicates that the 

data is from July 29 to September 29, 2021. used in the ARIMA 

(12,0,4) form for the Autumn season. The forecasted wind speed 

is low than the real wind speed and the error is approximately 

1.2334 m/s. MAPE is approximately 0.26 

In Figure 8 using the ARIMA model (12, 0, 4), and 2900-hour 

sample input before the 53 sample output forecasts, wind speed 

predictions were made for the next 53 hours (2.2 days). Error 

computed, RMSE, MAPE, MSE. 

 

Figure 8 ARIMA (12,0,4) With 2900 samples and 53-hrs forecasting. 

Table 5: ARIMA (12,0,4) With 2900 samples and 53-hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 5.3618 1.0021 1.7364 0.2421 3.0151 

In table 5 the fifth sample is 2900 hours. This indicates that the 

data is from June 1, 2021 to September 29, 2021. Used in the 
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ARIMA model (12,0,4) for the fall season. The forecasted wind 

speed is lower than the real wind speed and the error is about 

1.0021 m/s. MAPE is about 0.2421. 

3.2 model-II: 53-Hrs Ahead Based on Autoregressive 

(12,0,0). 

Historical 
WIND DATA

MANY 
DIFFERENT 
SAMPLES 

53 Sample 
predicted 

Wind speed

FORECASTING 
WIND DATA

AR(12.0.0)

 

Figure 9 explain part 2 of first model used the AR for all samples 
(200,400,1000,1500 and 2900) and fixed orders (12,0,0). 

In Figure 10 using the AR model (12, 0,0), and 200-hour sample 

input before the 53 sample output forecasts, wind speed 

predictions were made for the next 53 hours (2.2 days). Error 

computed, RMSE, MAPE, MSE. 

 

Figure 10 AR (12,0,0) With 200 samples and 53-hrs forecasting. 

Table 6: AR (12,0,4) With 200 samples and 53-hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 6.2962 0.0677 1.7298 0.27 2.9921 

In table 6 the first sample is 200 hours. This indicates that the 

data from September 20 to 29, 2021 in the AR model (12,0,0) to 

predict wind speed in the autumn season. The forecasted wind 

speed is close to the real wind speed and the error is 

approximately 0.0677m/s. MAPE is approximately 0.27.  

In Figure 11 using the AR model (12, 0,0), and 400-hour sample 

input before the 53 sample output forecasts, wind speed 

predictions were made for the next 53 hours (2.2 days). Error 

computed, RMSE, MAPE, MSE. 

 

Figure 11 AR (12,0,0) With 400 samples and 53-hrs forecasting. 

Table 7: AR (12,0,0) With 400 samples and 53-hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 5.8999 0.4640 1.3223 0.17 1.7486 

In table 7 the second sample is 400 hours. This indicates that the 

data is from September 11 to 29. 2021 must be used in the AR 

(12,0,0) form for the Autumn season. The forecasted wind speed 

is close to the real wind speed and the error is approximately 

0.4040 m/s. MAPE is approximately 0.17.  

In Figure 12 using the AR model (12, 0,0), and 1000-hour sample 

input before the 53 sample output forecasts, wind speed 

predictions were made for the next 53 hours (2.2 days). Error 

computed, RMSE, MAPE, MSE. 

 

Figure 12 AR (12,0,0) With 1000 samples and 53-hrs forecasting. 

Table 8: AR (12,0,0) With 1000 samples and 53-hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 6.3954 -0.0315 1.2869 0.21 1.6562 
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 In table 8 the third sample is 1000 hours. This indicates that the 

data is from august 18 to September 29, 2021. used in the AR 

(12,0,0) form for the Autumn season. The forecasted wind speed 

is great than the real wind speed and the error is approximately -

0.0315 m/s. MAPE is approximately 0.21. 

In Figure 13 using the AR model (12, 0,0), and 1500-hour sample 

input before the 53 sample output forecasts, wind speed 

predictions were made for the next 53 hours (2.2 days). Error 

computed, RMSE, MAPE, MSE. 

 
Figure 13 AR (12,0,0) With 1500 samples and 53-hrs forecasting. 

Table 9: AR (12,0,0) With 1500 samples and 53-hrs forecasting 

Real data forecasting error RMSE MAPE MSE 

6.3639 4.9771 1.3868 2.0160 0.28 4.0641 

In table 9 the fourth sample is 1500 hours. This indicates that the 

data is from July 29 to September 29, 2021. used in the AR 

(12,0,0) form for the Autumn season. The forecasted wind speed 

is low than the real wind speed and the error is approximately 

1.3868 m/s. MAPE is approximately 0.28. 

In Figure 14 using the AR model (12, 0,0), and 2900-hour sample 

input before the 53 sample output forecasts, wind speed 

predictions were made for the next 53 hours (2.2 days). Error 

computed, RMSE, MAPE, MSE. 

 

Figure 14 AR (12,0,0) With 2900 samples and 53-hrs forecasting. 

Table 10: AR (12,0,0) With 2900 samples and 53-hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 5.2955 1.0684 1.7955 0.25 3.2240 

In table 10 the fifth sample is 2900 hours. This indicates that the 

data is from June 1, 2021 to September 29, 2021. Used in the 

AR model (12,0,0) for the autumn season. The forecasted wind 

speed is lower than the real wind speed and the error is about 

1.7955 m/s. MAPE is about 0.25. 

         After using ARIMA and AR individually, why is the 

Weibull distribution used? The Weibull distribution is a 

probability distribution function of wind speed characterizing the 

frequency of occurrence of wind speed at a site. The Weibull 

distribution function is described by two factors: K which is the 

form factor and C which is the scale factor (some references use 

A instead of C).[25] Thus, the Weibull distribution represents the 

wind speed distribution. The Weibull distribution describes the 

distribution of wind speed because the distribution of wind speed 

is well fitted by the Weibull distribution.[26] Due to the random 

nature of wind, it could be represented by a probabilistic model. 

Usually, Weibull and Rayleigh models are used to describe the 

probability distribution for a measured wind speed in a specific 

location during a certain time [27]. Estimating wind Weibull for a 

location could be used in distributed wind power generation 

planning. Moreover, it can be used to predict Weibull for cyber-

physical system sensor network as in [27,28], In other words, the 

Weibull distribution is proportional to the wind speed distribution 

close to the actual wind speed distribution, so using the help of 

the Weibull distribution with the hybrid model with ARIMA and 

AR to get more accurate results. 

 

3.3 model-II: 53-Hrs Ahead Based on Autoregressive 

moving average With Weibull distribution (12,0,4). 

Historical 
WIND DATA

FORECASTING 
WIND DATA

ARIMA(12.0.4)
&WEIBULL 

DISTRUBUTION

 

Figure 15 ARIMA (12,0,4) and Weibull distribution with 53-hrs forecasting. 

In Figure 16 using the ARIMA model (12,0,4) and Weibull 

distribution model, 200-hour sample input before the 53 sample 

output forecasts, wind speed predictions were made for the next 

53 hours (2.2 days). Error computed, RMSE, MAPE, MSE. 
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Figure 16 ARIMA (12,0,4) and Weibull distribution with 200 samples with 53-

hrs forecasting. 

Table 11: ARIMA (12,0,4) and Weibull distribution with 200 samples and 53-

hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 6.3197 0.0443 1.6563 0.27 1.6563 

In table 11 the first sample is 200 hours. This indicates that the 

data from September 20 to 29, 2021 in the ARIMA model (12,0,4) 

and the Weibull distribution model to predict wind speed in the 

autumn season. The forecasted wind speed is close to the real 

wind speed and the error is approximately 0.0443m/s. MAPE is 

approximately 0.27. 

In Figure 17 using the ARIMA model (12,0,4) and Weibull 

distribution model, 400-hour sample input before the 53 sample 

output forecasts, wind speed predictions were made for the next 

53 hours (2.2 days). Error computed, RMSE, MAPE, MSE.

 
Figure 17 ARIMA (12,0,4) and Weibull distribution with 400 samples and 53-

hrs forecasting. 

Table 12: ARIMA (12,0,4) and Weibull distribution with 400 samples and 53-

hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 6.0365 0.3275 1.6924 0.28 2.8642 

In table 12 the second sample is 400 hours. This indicates that the 

data is from September 11 to 29. 2021 must be used in the 

ARIMA (12,0,4) and the Weibull distribution model form for the 

Autumn season. The forecasted wind speed is close to the real 

wind speed and the error is approximately 0.3275 m/s. MAPE is 

approximately 0.28. 

In Figure 18 using the ARIMA model (12,0,4) and Weibull 

distribution model, 1000-hour sample input before the 53 sample 

output forecasts, wind speed predictions were made for the next 

53 hours (2.2 days). Error computed, RMSE, MAPE, MSE. 

 

Figure 18 ARIMA (12,0,4) and Weibull distribution with 1000 samples and 53-

hrs forecasting. 

Table 13: ARIMA (12,0,4) and Weibull distribution with 1000 samples and 53-

hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 6.3545 0.0094 1.5199 0.26 2.3102 

In table 13 the third sample is 1000 hours. This indicates that the 

data is from august 18 to September 29, 2021. used in the 

ARIMA (12,0,4) and the Weibull distribution model form for the 

Autumn season. The forecasted wind speed is great than the real 

wind speed and the error is approximately 0.0094 m/s. MAPE is 

approximately 0.26. 

In Figure 19 using the ARIMA model (12,0,4) and Weibull 

distribution model, 1500-hour sample input before the 53 sample 

output forecasts, wind speed predictions were made for the next 

53 hours (2.2 days). Error computed, RMSE, MAPE, MSE. 

 

Figure 19 ARIMA (12,0,4) and Weibull distribution with 1500 samples and 53-

hrs forecasting. 

Table 14: ARIMA (12,0,4) and Weibull distribution with 1500 samples and 53-

hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 5.5852 0.7787 1.8780 0.32 3.5267 

In table 14 the fourth sample is 1500 hours. This indicates that 

the data is from July 29 to September 29, 2021. used in the 
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ARIMA (12,0,4) and the Weibull distribution model form for the 

Autumn season. The forecasted wind speed is low than the real 

wind speed and the error is approximately 0.7787 m/s. MAPE is 

approximately 0.32. 

In Figure 20 using the ARIMA model (12,0,4) and Weibull 

distribution model, 2900-hour sample input before the 53 sample 

output forecasts, wind speed predictions were made for the next 

53 hours (2.2 days). Error computed, RMSE, MAPE, MSE 

 

Figure 20 ARIMA (12,0,4) and Weibull distribution with 2900 samples and 53-

hrs forecasting. 

Table 15:  ARIMA (12,0,4) and Weibull distribution with 400 samples and 53-

hrs forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 5.6879 0.6761 1.7563 0.29 3.0847 

In table 15 the fifth sample is 2900 hours. This indicates that the 

data is from June 1, 2021 to September 29, 2021. Used in he 

ARIMA model (12,0,4) and the Weibull distribution model from 

for the autumn season. The forecasted wind speed is lower than 

the real wind speed and the error is about 0.6761 m/s. MAPE is 

about 0.29. 

3.4   model-III: 53-Hrs Ahead Based on Autoregressive 

with Weibull distribution (12,0,0). 

Historical 
WIND DATA

FORECASTING 
WIND DATA

AR(12.0.0)
&WEIBULL 

DISTRUBUTION

 

Figure 21 AR (12,0,0) and Weibull distribution and 53-hrs forecasting. 

In Figure 22 using the AR model (12,0,0) and Weibull 

distribution model, 200-hour sample input before the 53 sample 

output forecasts, wind speed predictions were made for the next 

53 hours (2.2 days). Error computed, RMSE, MAPE, MSE. 

 

Figure 22 AR (12,0,0) and Weibull distribution with 200 samples and 53-hrs 

forecasting. 

Table 16: AR (12,0,0) and Weibull distribution with 200 samples and 53-hrs 

forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 6.2880 0.0759 1.5801 0.25 2.4968 

In table 16 the first sample is 200 hours. This indicates that the 

data from September 20 to 29, 2021 in the AR model (12,0,0) and 

the Weibull distribution model to predict wind speed in the 

autumn season. The forecasted wind speed is close to the real 

wind speed and the error is approximately 0.0759m/s. MAPE is 

approximately 0.25. 

In Figure 23 using the AR model (12,0,0) and Weibull 

distribution model, 400-hour sample input before the 53 sample 

output forecasts, wind speed predictions were made for the next 

53 hours (2.2 days). Error computed, RMSE, MAPE, MSE. 

 

Figure 23 AR (12,0,0) and Weibull distribution with 400 samples and 53-hrs 

forecasting. 

Table 17: AR (12,0,0) and Weibull distribution with 400 samples and 53-hrs 
forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 6.0125 0.3514 1.6916 0.28 2.8617 

In table 17 the second sample is 400 hours. This indicates that the 

data is from September 11 to 29. 2021 must be used in the AR 

(12,0,0) and the Weibull distribution model form for the Autumn 

season. The forecasted wind speed is close to the real wind speed 
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and the error is approximately 0.3514 m/s. MAPE is 

approximately 0.28. 

In Figure 24 using the AR model (12,0,0) and Weibull 

distribution model, 1000-hour sample input before the 53 sample 

output forecasts, wind speed predictions were made for the next 

53 hours (2.2 days). Error computed, RMSE, MAPE, MSE. 

 

Figure 24 AR (12,0,0) and Weibull distribution with 1000 samples and 53-hrs 

forecasting. 

Table 18: AR (12,0,0) and Weibull distribution with 1000 samples and 53-hrs 

forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 6.3424 0.0216 1.5260 0.26 2.3286 

In table 18 the third sample is 1000 hours. This indicates that the 

data is from august 18 to September 29, 2021. used in the AR 

(12,0,0) and the Weibull distribution model form for the Autumn 

season. The forecasted wind speed is great than the real wind 

speed and the error is approximately 0.0216 m/s. MAPE is 

approximately 0.26. 

In Figure 25 using the AR model (12,0,0) and Weibull 

distribution model, 1500-hour sample input before the 53 sample 

output forecasts, wind speed predictions were made for the next 

53 hours (2.2 days). Error computed, RMSE, MAPE, MSE. 

 

 

Figure 25 AR (12,0,0) and Weibull distribution with 1500 samples and 53-hrs 

forecasting. 

 

Table 19: AR (12,0,0) and Weibull distribution with 1500 samples and 53-hrs 

forecasting. 

Real data Forecasting Error RMSE MAPE MSE 

6.3639 5.5085 0.8555 1.9141 0.33 3.6433 

In table 19 the fourth sample is 1500 hours. This indicates that 

the data is from July 29 to September 29, 2021. used in the AR 

(12,0,0) and the Weibull distribution model form for the Autumn 

season. The forecasted wind speed is low than the real wind 

speed and the error is approximately 0.8555 m/s. MAPE is 

approximately 0.33. 

In Figure 26 using the AR model (12,0,0) and Weibull 

distribution model, 2900-hour sample input before the 53 sample 

output forecasts, wind speed predictions were made for the next 

53 hours (2.2 days). Error computed, RMSE, MAPE, MSE. 

 

Figure 26 AR (12,0,0) and Weibull distribution with 2900 samples and 53-hrs 

forecasting. 

Table 20: AR (12,0,0) and Weibull distribution with 2900 samples and 53-hrs 

forecasting. 

Real data forecasting error RMSE MAPE MSE 

6.3639 5.8441 0.7092 1.7797 0.30 3.1672 

In table 20 the fifth sample is 2900 hours. This indicates that the 

data is from June 1, 2021 to September 29, 2021. Used in the 

AR model (12,0,0) and the Weibull distribution model from for 

the autumn season. The forecasted wind speed is lower than the 

real wind speed and the error is about 0.7092 m/s. MAPE is 

about 0.30. 

4 RESULT DISCUSSION. 

Table 21 Mean 53-hrs forecasting Based on 5 model (ARIMA-AR-

WEIBULL). 

 

6.3639 m/s 

Real Data 

ARIMA 

(12.0.4) 

AR 

(12.0.0) 

ARIMA & 

WEIBULL 

AR & 

WEIBULL 

200 sample 6.3595 6.2962 6.3197 6.2880 

400 sample 5.9479 5.8999 6.0365 6.0125 

1000 sample 6.4197 6.3954 6.3845 6.3424 

1500 sample 5.1305 4.9771 5.5825 5.5085 

2900 sample 4.4673 5.2955 5.6879 5.6547 
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Figure 27 Mean 53-hrs forecasting Based on 5 model (ARIMA-AR-

WEIBULL). 

 Table 22: Error 53-hrs forecasting Based on 5 model (ARIMA-AR-

WEI

BUL

L). 

 

Figure 28 Error 53-hrs forecasting Based on 5 model (ARIMA-AR-WEIBULL). 

Table 23: RMSE53-hrs forecasting Based on 5 model (ARIMA-AR-WEIBULL). 

No. of 

Samples 

ARIMA 

(12.0.4) 

AR 

(12.0.0) 

ARIMA & 

WEIBULL 

AR & 

WEIBULL 

200 2.0852 1.7298 1.6563 1.5801 

400 1.3347 1.3223 1.6924 1.6916 

1000 1.2739 1.2869 1.5199 1.5260 

1500 1.8951 2.0160 1.8780 1.9141 

2900 2.4664 1.7955 1.7563 1.7797 

 

 

Figure 29 RMSE53-hrs forecasting Based on 5 model (ARIMA-AR-WEIBULL). 

Table 24: MAPE 53hrs forecasting Based on 5 model (ARIMA-AR-WEIBULL). 

No. of 

Samples 

ARIMA 

(12.0.4) 

AR 

(12.0.0) 

ARIMA & 

WEIBULL 

AR & 

WEIBULL 

022 sample 0.2962 0.27 0.27 0.25 

400 sample 0.20 0.17 0.28 0.28 

1000 sample 0.20 0.25 0.26 0.26 

1500 sample 0.26 0.28 0.32 0.33 

2900 sample 0.39 0.25 0.29 0.30 

 

Figure 30 MAPE 53hrs forecasting Based on 5 model (ARIMA-AR-WEIBULL). 

 In this paper, two methods were presented to predict wind speed 

in the Hurghada region: the first using the ARIMA structure (p, 

0, q) and AR (p, 0, 0) separately, the orders were chosen as a 

separation in the average wind speed, and the second using the 

ARIMA structure (p, 0, 0) and an AR hybrid model (p, 0, 0) with 

a Weibull distribution over five samples, 200, 400, 1000, 1500, 

and 2900. Wind speed was high during the autumn forecast 

season. 

Comparison of AR, ARIMA, and the hybrid with Weibull 

distribution in 5 examples 200,400,1000,1500,2900 samples 

with orders fixed of AR and ARIMA and application of mean 

wind speed prediction, error, MAPE, and MSE to derive the best 

model for forecasting wind speed as the number of samples 

increases. 

When employing 200 samples, the best results were obtained by 

using ARIMA (12,0,4) where mean wind forecast be 6.3595 and 

real wind speed 6.3639 and error equals 0.0044 and best 

between all methods, which requires less samples and produces 

better results. 

When employing 400 samples, the best results were obtained by 

using ARIMA (12,0,4) where mean wind forecast be 6.0365 and 

real wind speed 6.3639 and error equals 0.3275 and best 

between all methods, which requires more samples and produces 

better results. 

When employing 1000 samples, the best results were obtained 

by using ARIMA (12,0,4) where mean wind forecast be 6.3845 

and real wind speed 6.3639 and error equal -0.0094 and best 

between all methods, which requires more samples and produces 

better results. 

When employing 1500 samples, the best results were obtained 

by using ARIMA (12,0,4) where mean wind forecast be 5.5825 

and real wind speed 6.3639 and error equal 0.7787 and best 

between all methods, which requires more samples and produces 

better results. 

When employing 2900 samples, the best results were obtained 

by using ARIMA (12,0,4) where mean wind forecast be 5.6878 

and real wind speed 6.3639 and error equal 0.6761 and best 

between all methods, which requires more samples and produces 

better results. 

4.00 
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400 
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1000 
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1500 
sample 

2900 
sample 

Mean 53-hrs forecasting Based on 5 
model (ARIMA-AR-WEIBULL). 

ARIMA (12.0.4) AR (12.0.0)

ARIMA & WEIBULL AR & WEIBULL
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2900 
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Error 53-hrs forecasting Based on 5 model 
(ARIMA-AR-WEIBULL). 
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RMSE53-hrs forecasting Based on 5 model 
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MAPE 53hrs forecasting Based on 5 model 
(ARIMA-AR-WEIBULL). 

ARIMA (12.0.4) AR (12.0.0) ARIMA & WEIBULL AR & WEIBULL

No. of 

Samples 

ARIMA 

(12.0.4) 

AR 

(12.0.0) 

ARIMA & 

WEIBULL 

AR & 

WEIBULL 

200 0.0044 0.0677 0.0443 0.0759 

400 0.4160 0.4640 0.3275 0.3514 

1000 -0.0558 -0.0315 -0.0094 0.0216 

1500 1.2334 1.3868 0.7787 0.81533 

2900 1.8967 1.0684 0.6761 0.7092 
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In comparison to proposed model in [29] which forecast very 

short to short-term wind speed based on a hybrid approach that 

combines maximal overlap discrete Wavelet transform with 

ARIMA and adjusted a dynamic moving window with Markov 

chains. This model showed improved performance to forecast 

wind speed with a self-adaptive state categorization for 

equal/unequal intervals. However, the proposed model in our 

manuscript combines either autoregressive or autoregressive 

integrated moving average with cumulative Weibull distribution 

to obtain better forecasting accuracy and maintain model efficacy 

and simplicity 

 

5 CONCLUSION AND FUTURE WORK. 

This paper proposed a wind Weibull distribution with AR and 

ARIMA for improve forecasting wind speed and increased of 

numbers of samples incoming and decreased of error. For each 

case, the average prediction of wind speed and error rate is 

calculated with the increase in the number of samples 

When employing 200 samples, the best results were obtained by 

using ARIMA (12,0,4), which requires less samples and produces 

better results.  

The best results were obtained while utilizing 400, 1000,1500 and 

2900 samples with a hybrid model ARIMA (12,0,4) with Weibull 

distribution. As the input time lengthens, so does the difference 

between real data and predictions. MAPE values differ from 

MAE and RMSE values. 

Because the studied wind speed data is unstable, the error from 

the first input increases for MAPE, MAE, and RMSE values 

when predicting wind speed. As the input time lengthens, so does 

the difference between real data and predictions. The prediction 

error will be increased with increased samples. MAPE values 

differ from MAE and RMSE values. It is safe to say that a longer 

time of windspeed forecast results in bigger errors. Furthermore, 

wind speed forecast grows progressively wrong over time. 

Our next research will use Weibull distribution order 3 in 

conjunction with ARIMA and AR to overcome the substantial 

uncertainty in wind speed variation and eliminate data outliers. 

We also intend to expand the proposed models to include wind-

speed forecasts. 
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