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ABSTRACT: 

Preserving human health and life is of utmost importance in the development of automatic 

detection methods for early brain tumor diagnosis, considering the severe neurological 

impairments and potential fatality associated with the disease. Computational efficiency plays a 

critical role in brain tumor classification for real-time decision-making, treatment planning, and 

overall healthcare system optimization. While convolutional neural networks (CNNs) are widely 

used for brain tumor detection due to their exceptional accuracy, their high computational 

demands present significant challenges. To address the challenge at hand, a hybrid model is 

employed, integrating a pre-trained convolutional neural network (CNN) transfer learning model 

and the distributed computing programming paradigm. The primary objective involves two 

stages: In the first stage, InceptionV3 and VGG19 CNN transfer learning models are deployed 

on GPUs for detecting brain malignancies. Performance metrics, including accuracy, precision, 

recall, and F1-Score, are assessed, along with a comparative analysis of computational time on 

CPUs and GPUs. Results show InceptionV3 achieving a higher accuracy rate (approximately 

98.83%) than VGG19 (77.65%), with superior computational speed on both CPU and GPU 

platforms. GPU execution significantly reduces computational time by up to 90%, attributed to 

the efficient architecture of InceptionV3. In the second stage, real-time classification is 

conducted using distributed computing process with previously trained CNN models for gliomas, 

meningiomas, and pituitary tumors, respectively. This integrated approach offers an efficient 

solution for real-time classification of large-scale brain tumor datasets. 
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1. INTRODUCTION: 

Brain tumors are abnormal growths of cells 

that can occur within the brain or its 

surrounding tissues. These tumors may pose 

significant health risks [1]. Benign and 

malignant brain tumors are broadly 

categorized groups of brain tumors. Benign 

brain tumors are non-cancerous tumors and 

have a slow growth rate. Malignant tumors 

are malignant growths that have quickly 

encroached on nearby tissues [2]. 

The malignancy tumors have grades that 

evaluate their aggressive behavior of it in 

human health[2]. 

The three most common forms of brain 

tumors that can be labeled as benign or 

malignant are gliomas, meningiomas, and 

pituitary tumors. The glial cells that give rise 

to gliomas. The meninges and the barrier 

membranes covering the brain are where 

meningiomas develop. The pituitary gland, a 

key player in hormone regulation, can 

develop a pituitary tumor[1].  

The efficient imaging techniques for brain 

tumors are computed tomography (CT), 

positron emission tomography (PET), and 

magnetic resonance imaging (MRI). [3]. CT 

and MRI are among the most commonly 

used imaging techniques. MRI provides 

detailed anatomical information with high 

resolution, enabling precise visualization of 

the tumor and its surroundings. It begets 

multiple plane images, which allows 

comprehensive evaluation and precise 

localization of the tumor within the brain[4]. 

Unlike CT scans, MRI uses non-ionizing 

radiation, making it safer for repeat imaging 

or long-term monitoring. Advanced 

functional and physiological assessment 

methods are also available with MRI, 

including functional magnetic resonance 

imaging (fMRI), perfusion-weighted 

imaging, and diffusion-weighted imaging 

(DWI), which offer useful insights into 

tumor features and brain activity[5]. 

Additionally, MRI can be enhanced with 

contrast agents, aiding in tumor detection 

and differentiation from normal 

tissues[6][7].  

Advancements in computer-aided diagnoses 

(CAD) have led to the availability of both 

traditional machine-learning algorithms and 

deep neural networks for diagnosing brain 

tumors. There are fundamental differences 

in the approach and capabilities between 

traditional machine learning 

algorithms and deep neural networks. 

Traditional machine learning algorithms 

typically rely on handcrafted feature 

engineering, where domain experts 

manually select and design relevant features 

to represent the data. These algorithms then 

learn patterns and make predictions based on 

these engineered features using statistical 

methods like decision trees or support vector 

machines. In contrast, deep neural networks, 

such as CNNs, automatically learn features 

from raw input data through a hierarchical 

architecture of interconnected layers. This 

ability to learn hierarchical representations 

enables CNNs to extract complex features 

and capture intricate patterns from large-

scale data, making them particularly 

effective for tasks involving images, videos, 
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and sequential data[8]. Additionally, CNNs 

often employ convolutional and pooling 

layers that exploit spatial relationships and 

reduce the dimensionality of the data, 

allowing for more efficient processing. 

The computational time required for training 

and inference is a known disadvantage of 

Convolutional Neural Networks (CNNs). 

Due to their deep and complex architecture, 

CNNs often have a substantial number of 

parameters, which increases the 

computational demands during training and 

inference. However, one way to mitigate this 

drawback is by utilizing transfer learning 

models. Transfer learning leverages pre-

trained CNN models on large-scale datasets, 

allowing for the reuse of learned features 

and reducing the need for extensive training 

from scratch. By employing transfer 

learning, the computational time for training 

and inference can be significantly decreased, 

as the model benefits from the pre-existing 

knowledge embedded in the pre-trained 

network[9]. To further improve 

computational time and achieve better 

performance, running transfer learning on a 

Graphics Processing Unit (GPU) instead of a 

Central Processing Unit (CPU) can be 

beneficial. GPUs are highly parallel 

processors that excel at performing complex 

computations required by deep learning 

algorithms like CNNs[10]. They have 

multiple cores designed to handle numerous 

calculations simultaneously, enabling faster 

training and inference times compared to 

CPUs. By leveraging the parallel processing 

power of GPUs, the computational workload 

of transfer learning can be distributed across 

multiple cores, resulting in significant 

speed-ups. 

In the realm of real-time classification, 

handling the substantial volume of brain 

tumor data necessitates a strategy beyond 

exclusive reliance on pre-trained transfer 

learning models for swift classification. 

Consequently, diverse algorithms have 

emerged to tackle the complexities 

presented by big data in real-time 

classification, with notable methodologies 

including distributed computing process. 

The MapReduce programming model , 

originating from Google, serves as a 

distributed computing process tailored for 

parallel and scalable processing and analysis 

of extensive datasets[11]. Comprising two 

primary phases—Map and Reduce—the 

model involves assessing the accuracy of the 

Map Reduce programming model for each 

specific type of brain tumor. 

 partitions the input dataset into smaller 

segments during the Map phase. An 

autonomous "mapping" function is 

concurrently applied to each segment in 

parallel, facilitating simultaneous execution 

across distinct portions of the dataset. The 

subsequent Reduce phase involves the 

application of a "reducing" function to the 

key-value pairs generated in the Map phase. 

This function aggregates, combines, or 

analyzes values associated with each key, 

yielding a final set of output results. The 

Map Reduce programming model's 

distinctive division of computation into 

these interconnected phases offers an 

efficient approach for large-scale data 

processing in distributed environments, 

contributing to enhancements in 

computational time and overall performance 

[12]. 

In this study, we employed the Inception V3 

and VGG19 architectures as transfer 

learning models for Convolutional Neural 

Networks (CNNs) to categorize brain 

tumors in the pituitary, meningioma, and 

glioma using the Kaggle Brain Tumor 

Classification MRI database. The accuracy, 

precision, recall, and F1-Scoremetricsand 

elapsed time on Graphics Processing Unit 

(GPU) were assessed to determine the 
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acceleration of the computational efficiency 

of the training process, providing insights 

into optimizing the performance of the CNN 

models for brain tumor diagnosis. The 

comparative evaluation of computational 

time entailed contrasting the execution of 

models on a high-performance Graphics 

Processing Unit (GPU) against the 

utilization of a Central Processing Unit 

(CPU).To achieve real-time classification, 

the previously designed CNN transfer 

learning model is employed to train a 

dataset. Subsequently, this trained dataset 

serves as input to the MapReduce 

programming model, facilitating real-time 

classification.  

Our proposed studies make several 

significant contributions: 

-  Several deep convolutional transfer 

learning model architectures, including 

VGG19 and Inceptionv3, are investigated to 

assess how well they perform when 

classifying brain tumors from MRI data. 

- Investigating the effects of freezing certain 

layers in previously trained models and then 

swapping out the final layers for the 

categorization of various types of brain 

cancers. With this method, we may use the 

pre-training information while still 

customizing the model for the categorization 

of brain tumors. 

-  We introduce an efficient hybrid model 

for real-time classification of diverse brain 

tumors. This model integrates a pre-trained 

CNN transfer learning model with the 

distributed computing process, specifically 

employing the MapReduce programming 

paradigm. 

The structure of this paper adheres to a 

systematic organization. Section 1 serves as   

The introduction provides an overview of 

the research topic. Section 2 delves into the 

related work, examining previous studies 

and approaches in the field. In Section 3, the 

proposed methodology is presented, 

outlining the novel techniques and methods 

employed in this research also, describes the 

evaluation metrics employed to assess the 

effectiveness of the transfer learning models 

used in the study. Section 4 is dedicated to 

the discussion of the obtained results, where 

the findings are analyzed and interpreted in 

detail. Section 5 provides a comparison 

between the proposed method and related 

work. Finally, the paper concludes with a 

comprehensive summary and concluding 

remarks in the final section.

2. RELATED WORK:  

Researchers have put forth a variety of 

techniques over the years for spotting brain 

malignancies in MRI scans. Both traditional 

machine learning algorithms and deep 

learning models are included in this group of 

methods, which include a wide range of 

methodologies. We review the relevant 

research on detecting brain tumors in this 

part. 

Kaur, T., & Gandhi, T. K. (2019)[13] 

developed an automated brain image 

classification system using the VGG-16 

architecture and transfer learning 

techniques. The authors utilized a dataset 

comprising brain MRI images for four 

different classes: glioma, meningioma, 

pituitary, and normal brain tissue. They 

applied transfer learning by utilizing the pre-

trained VGG-16 model. The study involved 

several stages, including data preprocessing, 

model training, and evaluation. During the 

preprocessing phase, the MRI images of the 

brain underwent a filtering process to 

improve their quality and eliminate any 

potential noise or artifacts present in the 

images. The preprocessed dataset was then 

used to train the VGG-16 model, with the 
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weights of the previously trained layers 

frozen to preserve the generic image 

representation capabilities discovered by 

ImageNet. Using a variety of criteria, 

including accuracy, precision, recall, and 

F1-score, the authors assessed the 

effectiveness of their categorization method. 

The outcomes revealed that their method 

classified brain images into the four classes 

with a high accuracy of 100%, confirming 

the efficiency of transfer learning and the 

VGG-16 architecture for this task. 

Deepak, S., & Ameer, P. M. (2019)[14] 

presented deep transfer learning and made 

use of a Google Net architecture that had 

already been trained to extract complex 

characteristics from brain MRI images. The 

framework seamlessly incorporates 

reputable classifier models to efficiently 

classify the retrieved information. The 

experimental evaluation uses a patient-level 

five-fold cross-validation strategy to ensure 

robustness and generalization, utilizing an 

MRI dataset obtained from Figshare that has 

been meticulously edited and adjusted to 

adhere to the highest scientific standards. 

These modifications include preprocessing 

techniques such as normalization and 

resizing. Remarkably, this pioneering 

system demonstrates a superior mean 

classification accuracy of 98%, surpassing 

all state-of-the-art methodologies. 

Rehman, A., Naz, S., et al. (2020)[15] used 

three alternative convolutional neural 

network (CNN) architectures, AlexNet, 

GoogleNet, and VGGNet, to develop a 

paradigm for classifying brain cancers. 

Using MRI slices of brain tumor datasets 

downloaded from Figshare 

(www.figshare.com), the framework 

investigated transfer learning approaches, 

notably fine-tuning and freezing. To 

enhance the generalization of results and 

prevent overfitting, data augmentation 

techniques were applied to the MRI slices, 

increasing the dataset size. The three studies 

conducted within the framework revealed 

that fine-tuning the VGG16 architecture 

yielded the best results, with classification 

and detection accuracy up to 98.69%. 

Mehrotra, R., Ansari, M. A. (2020)[16] 

presented a study utilizing artificial 

intelligence (AI) and deep learning models, 

namely AlexNet, GoogleNet, ResNet50, and 

ResNet101, for the classification of brain 

tumors (BTs) based on their types. The 

researchers utilized publicly available 

datasets from The Cancer Imaging Archive 

(TCIA) consisting of 696 T1-weighted brain 

images for testing purposes. Before applying 

TL models, various preprocessing 

techniques were applied to enhance the data 

for the network's training. These techniques 

include image augmentation methods such 

as flipping, mirroring, and rotation. The 

purpose of these techniques is to generate a 

larger set of data for the network, which is 

commonly employed to prevent overfitting. 

The system undergoes multiple rounds of 

training, where the existing pre-trained 

networks are modified through various 

renowned optimization techniques. These 

methods include adaptive moment 

estimation (Adam), root mean square 

propagation (RMSprop), and stochastic 

gradient descent with momentum (SGDM). 

By employing these advanced optimizers, 

the system aims to achieve the most optimal 

and finely-tuned trained network 

configuration for enhanced performance. 

Through the implementation of these AI 

algorithms, the researchers achieved 

remarkable results in accurately classifying 

BTs as either malignant or benign. 

Saxena, P., Maheshwari, A., & Maheshwari, 

S. (2020)[17] established a new 

convolutional neural network (CNN) 

architecture to carry out transfer learning for 

dividing brain MRI scans into benign and 

malignant categories. This approach utilizes 

three pre-existing and well-established 

models, capitalizing on their knowledge and 

http://www.figshare.com/


Vol.43, No.2. July 2024 

404 
 

expertise. The proposed methodology in this 

study is structured into three distinct phases. 

The initial dataset used for brain tumor 

detection consists of 253 images from brain 

MRI scans. In the first phase, the brain MRI 

images undergo preprocessing to prepare 

them for further analysis and evaluation of 

the developed model. The second phase 

involves the application of data 

augmentation techniques to the dataset, as it 

is relatively small. The third stage involves 

employing transfer learning to train several 

pre-trained convolutional neural network 

(CNN) models. The comparative analysis of 

these models demonstrates their respective 

efficacy. Empirical findings reveal that the 

ResNet-50 model attains an outstanding 

accuracy rate of 95%, positioning it at the 

peak of performance. Succeeding the VGG-

16 and InceptionV3 models exhibit 

commendable accuracies of 90% and 55%, 

respectively. 

Choudhury, C. L., Mahanty, C., et al. (2020) 

[18], developed a novel approach to identify 

brain MRI images as either benign or 

suggestive of malignancies using 

convolutional neural networks (CNN). The 

proposed model has exhibited an impressive 

accuracy rate of 96.08%, accompanied by a 

remarkable F-score of 97.3%. Utilizing a 

precisely crafted CNN architecture 

comprising three layers, the approach 

requires minimal preprocessing steps and 

achieves optimal results within 35 training 

epochs. 

Srinivas, Chetana, et al. (2022) [19], 

presented a comparison of the abilities of 

transfer learning-based CNN models VGG-

16, ResNet-50, and Inception-v3 to detect 

brain tumor cells automatically. The pre-

trained models were evaluated on a dataset 

consisting of 233 MRI brain tumor images, 

with the aim of accurately locating brain 

tumors using the VGG-16 pre-trained CNN 

model. The utilization of data preprocessing 

and data augmentation techniques, coupled 

with hyperparameter tuning, was employed 

to assess the performance of pre-trained 

Convolutional Neural Network (CNN) 

architectures for the detection of brain tumor 

cells. The study evaluated the performance 

of VGG-16, Inception-v3, and ResNet50 

models, aiming to identify the architecture 

that achieves the highest accuracy for both 

training and validation datasets. Overfitting 

was identified as a potential issue, whereby 

the model becomes limited to the specific 

training data and cannot make accurate 

predictions on new datasets. According to 

the study's findings, all architectures 

achieved training accuracy above 90%, with 

the highest validation accuracy reaching 

88.26%. According to the analysis, VGG-16 

provided the maximum accuracy on the 

trained and tested dataset, with validation 

accuracy being more closely related to 

accuracy with less loss and validation loss. 

Arbane, M., Benlamri, et al. (2021)[20], 

proposed employing convolutional neural 

performance; transfer learning techniques 

are employed. The model aims to categorize 

brain MRI images into two classes: those 

depicting tumors and those without tumors. 

To improve the model's efficacy, various 

preprocessing techniques such as image 

augmentation, normalization, cropping, and 

resizing are utilized. The dataset consists of 

253 MRI images, comprising 155 samples 

with tumors and 98 samples without tumors. 

Within the implemented system, multiple 

CNN architectures are explored, including 

ResNet, Xception, and MobileNet-V2. 

Among these architectures, MobileNet-V2 

demonstrates the most favorable outcomes, 

achieving an accuracy of 98.24% and an F1-

score of 98.42%. 

Sadad, T., Rehman, A., et al. (2021)[21], 

developed a unique strategy for brain tumor 

segmentation using ResNet50 and UNet 

architecture as the foundational model. The 

researchers achieved a remarkable 

intersection over the union (IOU) level of 

0.9504 using the Figshare dataset, 

demonstrating accurate segmentation results. 
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They introduced preprocessing methods and 

data augmentation techniques to increase the 

classification rate. The researchers also 

investigated the multi-classification of brain 

tumors, utilizing evolutionary algorithms 

and reinforcement learning via transfer 

learning. They employed a variety of deep 

learning techniques, including 

MobileNetV2, InceptionV3, ResNet50, and 

DenseNet201. The results indicated that the 

suggested research framework outperformed 

current state-of-the-art approaches. For 

tumor classification, various CNN models 

including MobileNetV2, InceptionV3, 

ResNet50, DenseNet201, and NASNet were 

employed, achieving accuracy percentages 

of 91.8%, 92.8%, 92.9%, and 93.1%, 

respectively. 

Ullah, Naeem, et al. (2022) [22], used pre-

trained transfer learning (TL) techniques to 

recognize and detect brain malignancies 

such as pituitary, meningioma, and glioma. 

The goal was to evaluate the abilities of nine 

pre-trained TL classifiers, including 

InceptionResNetV2, InceptionV3, Xception, 

ResNet18, ResNet50, ResNet101, 

ShuffleNet, DenseNet201, and 

MobileNetV2, to detect and automatically 

identify brain cancers using fine-grained 

classification. A baseline brain tumor 

classification (MRI) dataset provided by 

Kaggle was used to test the TL techniques, 

and all deep learning (DL) models were 

adjusted using their default parameters. The 

InceptionResNetV2 model, achieving an 

accuracy of 98.71% in the categorization of 

brain tumors, was demonstrated to be the 

most successful. This research illustrates the 

superiority of InceptionResNetV2 over other 

hybrid techniques using DL models for deep 

feature extraction and classification of brain 

tumors in terms of reliability and accuracy.  

  

 

  

 

 

 

 

 

 

 

3. PROPOSED METHODOLOGY: 

The proposed approach encompasses a 

hybrid system amalgamating a transfer 

learning framework utilizing Convolutional 

Neural Networks (CNNs) with MapReduce 

distributed computing methodology. The 

proposed methodology consists of two 

consecutive stages. In the first stage, transfer 

learning models are employed for the 
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training and classification of data. Following 

this, the second stage leverages the 

distributed computing process, employing 

the MapReduce programming paradigm. 

This involves utilizing the trained data from 

the initial stage to expedite real-time brain 

tumor classification through the parallelized 

processing capabilities inherent in 

MapReduce. The block diagram for the 

proposed methodology is shown in Figure 

(1). The first stage comprises four distinct 

steps. Firstly, the images are preprocessed to 

enhance their quality and prepare them for 

analysis. In the second step, transfer learning 

models, such as InceptionV3 and VGG19, 

are utilized to extract significant features 

from preprocessed images and classify them. 

In the third step, the performance of the 

transfer learning models is assessed by 

evaluating the accuracy of their predictions. 

 
 

 

 

 

 

 

 Figure (1) the block diagram for the proposed methodology  

 

 

   

Initially, magnetic resonance imaging (MRI) 

images were acquired from Kaggle, 

followed by the labeling of the dataset and 

preprocessing, which included resizing 

Trained data 
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(Brain tumor 
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Map Reduce 

programming 
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Output 
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based on a transfer learning algorithm. 

Subsequently, the data were partitioned into 

training and testing sets. Before 

implementing the transfer learning model, a 

crucial decision was made regarding 

whether to execute the model on a Central 

Processing Unit (CPU) or Graphics 

Processing Unit (GPU). The transfer 

learning model integrated convolutional 

layers for feature extraction, max-pooling 

layers for dimensionality reduction, fully 

connected layers for pattern recognition, and 

an activation function to introduce non-

linearity. Evaluation of the model involved 

metrics such as accuracy, precision, recall, 

F1-Score, and elapsed time.  

  

 

 

 

 

 

 

 

 

 

 

Figure (2) the second stage of the proposed methodology 

The second stage comprises two steps: the 

Map phase and the Reduce phase. In the 

Map phase, the testing dataset is partitioned 

into smaller, manageable segments for 

distribution. Each segment undergoes 

independent processing by a mapper 

function, applying the pre-trained model to 

generate predictions for individual images. 

Subsequently, in the Reduce phase, the 

results from the Map phase are aggregated 

and synthesized to yield the final output. 

 

 

3.1 The proposed model for the processing task based on Transfer learning 

models of CNN: 
3.1.1 The acquisition and 

preprocessing of datasets: 
 

 

A publicly accessible dataset, available on 

Kaggle (www.kaggle.com), encompasses a 

variety of categories of brain tumor MRI 

images. Four different types of brain tumor 

MRI images are included in the brain tumor 

MRI image dataset: no tumor, meningioma 

tumors, pituitary tumors, and glioma tumors. 

These images are divided into testing and 

training collections. However, the study was 

restricted to the MRI scans of the 
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meningioma, pituitary, and glioma tumors. 

The training folder of the dataset currently 

contains 826 MRI images of glioma brain 

tumors, 822 MRI images of meningiomas, 

and 827 MRI images of pituitary tumors. 

115 MRI images of meningiomas, 72 MRI 

images of pituitary tumors, and 100 MRI 

images of glioma brain tumors are included 

in the testing folder. Images from both 

folders were pooled, and 80% of the data 

were utilized for training, leaving 20% for 

testing. The 256x256 pixel grayscale images 

are offered in the JPG format and come in a 

variety of resolutions. Table (1) illustrates 

the brain tumor dataset. 

  

 

Table 1The brain tumor dataset 

Brain tumor 

Type 

 

Number of 

training images 

 

Number of 

testing images 

 

Total number of 

images 
 

Type 

 

Format 

Pituitary 827 72 899 

Grayscale JPG Glioma 826 100 926 

Meningioma 822 115 937 

 

The transfer learning model resizes and 

normalizes the images during the 

preprocessing phase. The block diagram of 

the preprocessing of MRI brain images is 

shown in Figure (3). 

 

 

 

 

 

 

Figure (3) the block diagram of the preprocessing of MRI brain images 

 

Normalizing brain MRI images is a crucial 

step in the pre-processing of medical 

images, as it helps to reduce variations in 

image intensity, contrast, and brightness, 

which can negatively impact image analysis 

and interpretation. The MRI images are 

normalized by scaling the pixel values to fit 

within a predetermined range of values, 

often between 0 and 1 or -1 and 1. This 

process helps to standardize the image   

intensities across different datasets, making 

it easier to compare and analyze images. The 

equation commonly used for normalizing 

brain MRI images is: 

I_norm = (I - I_min) / (I_max - I_min)   (1) 

 

Where I_norm is the normalized pixel value, 

I is the original image's pixel value, I_min is 

the image's lowest pixel value, and I_max is 

the highest pixel value. 

The resizing image adjustments are 

implemented to satisfy the specific 

MRI brain images Normalization Resizing according to the 

used pretrained model 
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prerequisites of each model and obtain the 

best possible outcomes. The dimensions for 

each model are predetermined and 

optimized based on the architecture and 

parameters of the models themselves. 

Specifically, the VGG19 model resizes the 

images to dimensions of 224x224, while the 

InceptionV3 model resizes them to 299x299  

 

3.1.2 Convolutional Neural Network 

(CNN): 

 Convolutional Neural Network, or CNN, is 

a deep learning algorithm. It is frequently 

employed in computer vision applications 

like picture segmentation, object detection, 

and classification [23]. The layers of a CNN 

are its main structural components, 

including the input layer, convolutional 

layers, pooling layers, and fully connected 

layers.  The convolutional layers are in 

charge of learning and extracting 

information and features via convolution 

operations from the input images. The 

feature maps' dimensionality is decreased 

and the most crucial data is captured by the 

pooling layers. The classification or 

regression tasks are then carried out by the 

fully connected layers using the learned 

features. The building of CNN is depicted in 

Figure(4). 

 

 

 

 

 

 

Figure (4) the building of CNN 

In the realm of deep learning, transfer 

learning is a potent method, especially when 

used with convolutional neural networks 

(CNNs). CNNs are frequently employed for 

applications including object identification, 

recognition, and image categorization [10]. 

Transfer learning uses previously learned 

information from models that have been 

used to train on massive datasets like 

ImageNet and apply it to new tasks using 

smaller datasets. In transfer learning for 

CNNs, the convolutional layers of the 

trained model serve as feature extractors 

[24]. These convolutional layers capture 

low-level features like edges, textures, and 

shapes. The model can be fine-tuned to suit 

the particular task at hand, such as 

identifying different objects or classifying 

different categories, by freezing these layers 

and adding additional layers on top. Since 

the pre-trained model has already learnt the 

necessary characteristics, this method 

conserves computational resources and 

training time. When there is not enough 

labeled data to train a model from scratch, 

CNNs' transfer learning models can be 

useful. The pre-trained models give the 

model a solid foundation from which to 

learn rapidly and effectively [25]. 

Additionally, transfer learning facilitates 

generalization and improves performance by 

avoiding over fitting on small datasets. 

Overall, transfer learning models of CNNs 

have revolutionized the field by enabling 

effective results even with limited data. 

Figure (5) shows the Overview of pretrained 

transfer learning model of proposed 

methodology. The extraction of significant 

Input Convolution  Pooling Fully connected  Output 

Feature Extraction Classification 
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features is facilitated by employing two 

strategies of transfer learning: freezing 

layers and fine-tuning. This process involves 

transferring pre-trained architecture weights 

from a source database, such as ImageNet, 

to a target database, exemplified by our 

migration from ImageNet to Kaggle. Fine-

tuning within the framework of transfer 

learning is utilized to augment the efficacy 

of Convolutional Neural Network (CNN) 

architectures by selectively adjusting the 

final layers of the pre-trained model. In 

essence, this entails substituting the 1,000 

categories of ImageNet with the three 

categories of brain tumor delineated in the 

Kaggle dataset. Popular transfer learning 

models include VGG, ResNet, MobileNet, 

and Inception [26]. In numerous image 

recognition applications, these models have 

been widely applied and shown to be 

successful. In Our study, the inceptionv3 

and VGG19 are used.  
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Figure (5) the Overview of pretrained transfer learning model of proposed methodology

 

 

 

3.1.2.1 InceptionV3 Transfer Learning 

Model: 

 

The use of "inception modules," which are 

intended to collect characteristics at various 

scales and minimize the amount of 

parameters in the model, is a hallmark of the 

Inception v3 architecture. The subsequent 

structure of the network is composed of a 

number of convolutional layers that extract 

features from the input image. To extract 

information from the input image, these 

layers employ a series of filters. The 

inception modules serve as the fundamental 

building blocks of the Inception v3 

architecture and are intended to collect 

information at various scales while 

minimizing the amount of model 

parameters. Each inception module is 

comprised of multiple convolutional layers 

of various sizes and pooling layers. These 

inception modules consist of several parallel 

convolutional layers of different sizes that 

are concatenated, allowing the network to 

gather features at multiple scales, a crucial 

aspect for identifying objects at various 

granularities. The network's next layer 

receives the output from each inception 

module. The fully connected layers in the 

Inception v3 model are used to map the 

features that the convolutional layers 

extracted to the output classes. These layers 

combine a set of weights with the output of 

the convolutional layers to produce the final 

output. The network's final output, which is 

a probability distribution over the output 

classes, is produced by the output layer. 

In total, there are 48 layers, including 11 

inception modules, in the Inception v3 

model as a whole. The model contains over 

23 million parameters, making it a sizable 

model. It can be tailored for particular image 

classification tasks with only a small amount 

of data, though, because it was pre-trained 

on a large dataset of images [27]. 

Additionally, the architecture includes 

additional components like batch 

normalization and dropout for improved 

performance. The Inception v3 model's 

input layer accepts images with a resolution 

of 299x299 pixels. 

3.1.2.2 VGG19Transfer Learning Model: 

The Visual Geometry Group (VGG) at the 

University of Oxford developed the 

convolutional neural network (CNN) 

architecture known as the VGG19 model for 

use in image recognition and classification 

applications. It is a pre-trained model honed 

for specific image classification tasks using 

a vast dataset of images. 

The VGG19 architecture can capture fine-

grained information in the input images 

because it employs a sequence of 

convolutional layers, each with a small filter 

size of 3x3. Max pooling layers and fully 

connected layers are also used in the 

architecture to boost performance. The input 

layer of the VGG19 architecture receives 

images with a resolution of 224x224 pixels. 

The subsequent layers in the network consist 

of 16 convolutional layers, 5 max pooling 

layers, and 3 fully connected layers. The 

pool size for the maximum pooling layers is 

2x2, while the filter size for each 

convolutional layer is 3x3. 

The feature extraction process on the input 

image is carried out by the convolutional 

layers. Each layer employs a collection of 

filters to extract features from the input 

image. The spatial dimensions of the feature 
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maps are reduced by the max pooling layers, 

which also provide the network with some 

translational invariance. The fully connected 

layers map the output classes to the features 

extracted by the convolutional layers. 

The designation VGG19 refers to the 

model's total of 19 layers. The first 16 layers 

are convolutional layers, followed by 5 max 

pooling layers and 3 fully connected layers. 

  

 3.1.3 EVOLUTION METRICS: 

The transfer learning model was evaluated 

using accuracy, precision, F1-score metrics, 

and elapsed time, which is the amount of 

time required by the model to complete the 

training process. 

 

3.1.3.1 Accuracy: 

The effectiveness of the integrated transfer 

learning model was evaluated using 

accuracy as the main assessment criterion in 

the study. 

Accuracy= (TP+TN)/Ts             (2) 

  

Where (TS) is the total number of samples 

and (TP) and (TN) are the true positive and 

true negative, respectively.  

 

3.1.3.2Precision:    

            Precision measures the accuracy of positive 

predictions made by a model. It is calculated 

as the number of true positive predictions 

divided by the sum of true positives and 

false positives: 

     Precision=TP/ (TP+FP)                   (3) 

           In simpler terms, precision evaluates the 

reliability of a model when it predicts a 

positive outcome, indicating how many of 

those predictions are correct. 

3.1.3.3 Recall: 

             Recall measures the ability of a model to 

correctly identify all relevant instances of a 

particular class. It is also known as 

sensitivity or true positive rate: 

Recall=TP/(TP+FN) (4) 

A higher recall indicates better performance. 

Sensitivity or true positive rate refers to the 

proportion of actual positive cases that were 

correctly identified by the model. 

3.1.3.4 F1-Score: 

The F1-Score is a statistical measure of a 

classification test's accuracy that balances 

both precision and recall. It is defined as: 

F1Score=2((precision*Recall)/(precision+R

ecall)) (5)    

3.1.3.5 Elapsed time:  

The time taken to train and assess a transfer 

learning model is referred to as the model's 

elapsed time. This comprises the time 

needed for data preprocessing, model 

training, and performance testing utilizing 

one or more metrics. The complexity of the 

model, the quantity of the training dataset, 

the technology utilized for training, and the 

optimization strategies used can all impact 

how long it takes. Given that longer elapsed 

intervals can lead to higher computational 

costs and longer development cycles, it is a 

crucial factor to take into account in 

machine learning.  

3.2 The proposed model based on 

distributed computing process: 

MapReduce serves as a distributed 

computing process, functioning as a 

programming model and processing 

framework tailored for large-scale data 

processing tasks. Widely utilized in 
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distributed computing environments like 

Apache Hadoop, MapReduce efficiently 

processes extensive datasets in parallel 

across a cluster of computers [29]. The 

MapReduce paradigm is typically used in 

distributed computing to process large data. 

In the context of brain tumor classification, 

the MapReduce methodology can be 

implemented as follows: 

3.2 .1. Mapper Phase: 

  The Map phase in the context of brain 

tumor classification based on MapReduce 

involves loading a pre-trained deep learning 

model and distributing the testing dataset 

into smaller, manageable chunks. Each 

chunk is processed independently by a 

mapper function, which applies the pre-

trained model to make predictions for 

individual images. The mapper handles 

potential errors, such as empty or corrupted 

images, and produces intermediate key-

value pairs. These pairs consist of unique 

identifiers (e.g., filenames) as keys and the 

corresponding prediction results as values. 

The intermediate output is logged, 

facilitating debugging and troubleshooting. 

This parallelized approach enables efficient 

prediction across the dataset, paving the way 

for subsequent aggregation and analysis in 

the Reduce phase. The pseudo code for the 

task of the Map phase is as follows: 

 

 

 

Mapper Phase Algorithm: 
1. Input: 

dataChunk: Chunk of data with image points. 

CNNmodel: Trained CNN-based transfer learning model. 

2. Initialization: 
predictions list. 

3. Loop: 
For each dataPoint: 

Try: 

Preprocess the brain tumor image. 

Get prediction using the CNN model. 

Emit filename and prediction. 

Catch exceptions: Emit filename and error. 

4. Output: 
predictions list with imageclass-prediction pairs. 

5. Overall Process: 
Load test data from brain tumor images. 

Split data into chunks. 

mappedPredictions list. 

6. Map Phase: 
For each chunk: 

Apply map function using CNN: Preprocess, predict, 

and emit. 

Append results to mappedPredictions. 

 

 

 

3.2 .2. Reducer Phase: 

 

In the Reduce phase of the MapReduce 

paradigm for brain tumor classification, the 

grouped and sorted key-value pairs from the 

Shuffle and Sort Phase are processed to 

consolidate predictions and derive final 

outcomes. Each unique identifier (e.g., 
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filename) is identified as a key, and the 

associated values encompass predictions 

from various mappers. The reducer function 

is designed to aggregate these predictions, 

often involving statistical operations. The 

parallelized nature of this phase enables 

simultaneous processing of multiple key 

groups across different reducers, enhancing 

overall efficiency. The Reduce phase 

concludes with the generation of the final 

output, providing insights into brain tumor 

classification based on the predictions made 

by the pre-trained deep learning model 

across the testing dataset. The pseudo code 

for the task of the Reduce phase is as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. 3. Post-Processing: 

The Post-Processing phase for the 

MapReduce model based on brain tumor 

classification involves the aggregation and 

analysis of the grouped predictions produced 

by the Shuffle and Sort Phase. The 

following step is the organization of data 

based on unique identifiers, after which the 

Reduce phase begins. In this phase, reducer 

functions are applied to the grouped data to 

generate overall predictions. This can 

include tasks such as combining 

probabilities from multiple mappers, 

determining the most likely class for each 

unique identifier, or calculating aggregate 

statistics. The Post-Processing phase aims to 

consolidate distributed predictions into 

cohesive and labeled output. It often 

includes logging and debugging mechanisms 

to assist in identifying any issues that may 

arise during the aggregation and analysis 

Reducer Phase algorithm: 
1. Initialize an empty dictionary named combinedPredictions. 
2. Loop through each set of predictions in the input (mappedPredictions). 
3. For each (imageclass, prediction) pair in the predictions set:  

Check if the filename is not already a key in combinedPredictions.  

If not, add the filename as a key with an associated empty list.  

Append the prediction to the list associated with the filename. 

4. After processing all predictions, combinedPredictionscontains filenames as 
keys, and each key has a list of associated predictions. 

5. Iterate through combinedPredictions to calculate the final prediction for 
each filename by aggregating the predictions. 

6. Return the combinedPredictionsdictionary as the result of the reduce 

operation. 
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process. The efficiency of the Post-

Processing phase is crucial for obtaining 

accurate and actionable insights from the 

distributed predictions generated by the 

parallelized Map phase. 

Let's compare this with a traditional (non-

distributed) approach. In a traditional 

approach, the elapsed time (ETtrad) might be 

expressed as: 

 
ETtrad=D/Strad   (6) 

Where Strad is the speed of processing in a 

traditional, non-parallelized setting.D is the 

size of the input data. The key comparison is 

the effect of parallelization in the Map 

Reduce approach, and then ET in Map 

Reduce can be considerably lower than 

ETtrad as Strad is higher in distributed 

processing (parallelization strategy). 

4. RESULT: 

 The dataset is available on Kaggle for free. 

Glioma, meningioma, and pituitary tumors 

are three different forms of brain tumors 

shown in Figure (6). 
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Figure (6) the first row is a glioma brain tumor, the second row is a meningioma brain tumor, 

and the third row is a pituitary brain tumor 

InceptionV3 and VGG19 are two of the pre-

trained transfer learning (TL) network 

classifiers used in this study. Together, they 

have the capacity to classify images into 

1000 different item classes. 1.28 million 

Images from the ImageNet database were 

used to train these classifiers on a sizable 

dataset. However, a more particular task, the 

three-class classification of brain tumors, is 

the main focus of this work. We used 

Google Colab platforms to implement our 

suggested model, which was written in the 

Python programming language. The Adam 

optimizer was used to train the transfer 

learning models, using a batch size of 16 

images and a learning rate of 0.01. Each 

deep learning model also completed 10 

training epochs. The characteristics of the 

transfer learning architecture are shown in 

Table(2)

 

 

 

 

 

 

Table 2 the parameters of transfer learning architecture 

 

 

 

 

 

 

 

 

 

 

A comprehensive analysis and evaluation of 

transfer learning models was carried out 

using accuracy, precision, and F1-Score 

metrics. The findings demonstrate that the 

InceptionV3 transfer learning model reached 

an impressive average classification 

accuracy of 98.83%. Conversely, the 

VGG19 transfer learning model attained a 

moderate average classification accuracy of 

77.65%. InceptionV3 exhibits a precision of 

97.43%, denoting its high accuracy in 

positively identifying relevant instances. 

Meanwhile, VGG19 demonstrates a 

precision of 76.07%, reflecting a 

comparatively lower precision rate. 

Additionally, the F1-score, a harmonic mean 

of precision and recall, is 96.34% for 

InceptionV3 and 72.65% for VGG19, 

providing a comprehensive evaluation of 

their classification performance. Table (3) 

illustrates the average accuracy 

classification and elapsed time on GPU and 

CPU.

 

Parameters Value 

algorithm for optimization Adam 

Loss binary_crossentropy 

Batch size 16 

Learning rate 0.01 

Maximum Epochs 10 

Train size 0.8 

Test size 0.2 

Random state 42 
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Table 3 the average accuracy classification and elapsed time 

Model Accuracy precision Recall F1-Score 
Elapsed Time 

on GPU 

Elapsed Time 

on CPU 

Inceptionv3 
98.83% 

97.43% 95.15% 96.34% 3min,40sec 42min,43sec 

VGG 19 
77.65% 

76.07% 75.44% 72.65% 5min,54sec 71min,6sec 

 

The elapsed time is the duration it takes for 

the model to accurately categorizes all 

images within the dataset. The elapsed time 

varies based on factors such as the volume 

of data utilized and the intricacy of the 

model's architecture. According to the data 

presented in Table (3), it is evident that the 

utilization of GPU for execution leads to 

higher efficiency compared to CPU 

execution. Consequently, leveraging GPU 

computing enables a reduction in 

computational time and enhancement of 

performance for transfer learning models, 

thereby optimizing their overall efficacy. 

Training and validation accuracy and loss 

charts for InceptionV3 are displayed in 

Figure (7), while Figure (8) displays the 

charts for VGG19. In both graphical 

representations, the x-axis denotes the 

number of epochs, while the y-axis depicts 

the levels of loss and accuracy. The 

observed reduction in loss during early 

epochs signifies the efficacy of the transfer 

learning model. Additionally, an increase in 

the number of epochs results in the 

stabilization of the transfer learning model.

 

 
 

 

 

Figure (7) Inceptionv3 training and validation accuracy and loss plots 
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Figure (8) VGG19 training and validation accuracy and loss plots 

 

The usage of inception modules, which are 

designed to capture features at various sizes 

while simultaneously reducing the number 

of parameters required, has led to the 

InceptionV3 model performing better than 

VGG19. Utilizing these multi-scale 

characteristics, InceptionV3 can achieve 

high accuracy while maintaining 

computational efficiency, resulting in a 

faster training process. In contrast, VGG19 

has a more straightforward architecture, 

which can lead to a higher number of 

parameters and a longer training time. 

 

MapReduce itself is a programming model 

and framework for processing and 

generating large datasets, and it is not 

inherently designed for machine learning 

model evaluation. However, in the context 

of brain tumor classification using 

MapReduce and deep learning, the 

evaluation metrics typically involve 

assessing the performance of the trained 

model based on its predictions. A common 

evaluation metric for brain tumor 

classification is accuracy. The result of 

evaluation based on the accuracy metric for 

different types of brain tumors is shown in 

Figure (9). 

 

 

. 
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Figure (9) Accuracy of Map Reduce model for different types of brain tumor 

 

The figure shows accuracy (93%, 88%, and 

92%) for different types of brain tumor 

classifiers based on MapReduce and deep 

learning. 

5. COMPARISON WITH RELATED 

WORK: 

We evaluated how well the top CNN-based 

transfer learning model, InceptionV3, 

classified brain cancers in comparison to 

other approaches. In particular, we 

contrasted the proposed work with transfer 

learning methods [20]. Table 4 presents a 

comparative analysis between the proposed 

method and related works based on 

accuracy. The superior performance of the 

proposed approach is attributed to its 

utilization of a greater number of epochs 

compared to the related work under 

consideration. Additionally, the 

implementation of a diverse optimization 

algorithm further contributes to the 

improved results achieved by the proposed 

method. 

.

Table 4 the comparison between proposed methods with related work 

 

Work 
transfer learning 

used 

algorithm for 

optimization 

Maximum 

Epochs 
Accuracy 

Ullah, 

Naeem[22] 
Inception v3 

SGDM 14 94.48% 

The proposed 

method 
Adam 16 98.8% 

 

 

6. Conclusion and future work: 

This research presents an automated method 

for classifying various brain cancers, 

including gliomas, meningiomas, and 

pituitary tumors. Utilizing InceptionV3 and 

VGG19 transfer learning models, the study 

achieves notable success, with InceptionV3 

exhibiting a high average classification 

accuracy of 98.8%. Additionally, the paper 
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thoroughly compares the computational time 

between GPU and CPU, demonstrating a 

significant advantage in favor of GPU 

execution. The study also introduces 

MapReduce as a crucial parallel processing 

framework for real-time classification in 

deep learning tasks, particularly for handling 

extensive datasets. This framework enables 

distributed processing, markedly reducing 

time for tasks like data preprocessing, 

feature extraction, and model evaluation by 

parallelizing smaller, independent data 

segments. These insights contribute to the 

advancement of brain tumor classification 

methodologies, emphasizing the benefits of 

MapReduce for real-time classification. 

Future work will explore alternative 

approaches for large brain tumor datasets 

and conduct a comparative analysis to 

identify the most efficient approach. 

REFRENCES: 

[1] American Brain Tumor Association, 

―Types of Brain Tumors,‖ 2021. 

https://www.abta.org/tumor_types/brain-

tumor-types/ 

[2] A. B. T. Association, ―Malignant 

Brain Tumors,‖ 2018. 

https://www.abta.org/tumor_types/gli

oblastoma/ 

[3] J. Y. Rhee et al., ―Palliative care in 

Africa: a scoping review from 2005–

16,‖ Lancet Oncol., vol. 18, no. 9, pp. 

e522–e531, 2017, doi: 

10.1016/S1470-2045(17)30420-5. 

[4] B. Hakyemez, N. Yıldırım, G.  

 

 

Gokalp, C. Erdogan, and M. Parlak, ―The 

contribution of diffusion-weighted 

MR imaging to distinguishing typical 

from atypical meningiomas,‖ 

Neuroradiology, vol. 48, no. 8, pp. 

513–520, 2006, doi: 10.1007/s00234-

006-0094-z. 

[5] C. M. Zylak, J. R. Standen, G. R. 

Barnes, and C. J. Zylak, 

―Pneumomediastinum revisited,‖ 

Radiographics, vol. 20, no. 4, pp. 

1043–1057, 2000, doi: 

10.1148/radiographics.20.4.g00jl1310

43. 

[6] A. Iglesias, M. Arias, P. Santiago, M. 

Rodríguez, J. Mañas, and C. 

Saborido, ―Benign Breast Lesions 

that Simulate Malignancy: Magnetic 

Resonance Imaging with Radiologic-

Pathologic Correlation,‖ Curr. Probl. 

Diagn. Radiol., vol. 36, no. 2, pp. 66–

82, 2007, doi: 

10.1067/j.cpradiol.2006.12.001. 

[7] A. R. Padhani et al., ―Diffusion-

weighted magnetic resonance 

imaging as a cancer biomarker: 

Consensus and recommendations,‖ 

Neoplasia, vol. 11, no. 2, pp. 102–

125, 2009, doi: 10.1593/neo.81328. 

[8] G. Goos et al., ECCV Computer 

Vision 2014. 2014. 

[9] J. P. Lai, Y. M. Chang, C. H. Chen, 

and P. F. Pai, ―A survey of machine 

learning models in renewable energy 

predictions,‖ Appl. Sci., vol. 10, no. 

17, 2020, doi: 10.3390/app10175975. 

[10] X. Shi, L. Xu, P. Wang, Y. Gao, H. 

Jian, and W. Liu, ―Beyond the 

Attention: Distinguish the 

Discriminative and Confusable 

Features for Fine-grained Image 

Classification,‖ MM 2020 - Proc. 

28th ACM Int. Conf. Multimed., pp. 

601–609, 2020, doi: 

10.1145/3394171.3413883. 

[11] J. Li, Y. Liu, J. Pan, P. Zhang, W. 

Chen, and L. Wang, ―Map-Balance-

Reduce: An improved parallel 

programming model for load 

balancing of MapReduce,‖ Futur. 



Vol.43, No.2. July 2024 

421 
 

Gener. Comput. Syst., vol. 105, pp. 

993–1001, 2020, doi: 

10.1016/j.future.2017.03.013. 

[12] R. Lämmel, ―Google’s MapReduce 

programming model - Revisited,‖ Sci. 

Comput. Program., vol. 68, no. 3, pp. 

208–237, 2007, doi: 

10.1016/j.scico.2007.07.001. 

[13] T. Kaur and T. K. Gandhi, 

―Automated brain image 

classification based on VGG-16 and 

transfer learning,‖ Proc. - 2019 Int. 

Conf. Inf. Technol. ICIT 2019, pp. 

94–98, 2019, doi: 

10.1109/ICIT48102.2019.00023. 

[14] S. Deepak and P. M. Ameer, ―Brain 

tumor classification using deep CNN 

features via transfer learning,‖ 

Comput. Biol. Med., vol. 111, no. 

June, p. 103345, 2019, doi: 

10.1016/j.compbiomed.2019.103345. 

[15] A. Rehman, S. Naz, M. I. Razzak, F. 

Akram, and M. Imran, ―A Deep 

Learning-Based Framework for 

Automatic Brain Tumors 

Classification Using Transfer 

Learning,‖ Circuits, Syst. Signal 

Process., vol. 39, no. 2, pp. 757–775, 

2020, doi: 10.1007/s00034-019-

01246-3. 

[16] R. Mehrotra, M. A. Ansari, R. 

Agrawal, and R. S. Anand, ―A 

Transfer Learning approach for AI-

based classification of brain tumors,‖ 

Mach. Learn. with Appl., vol. 2, no. 

October, p. 100003, 2020, doi: 

10.1016/j.mlwa.2020.100003. 

[17] P. Saxena, A. Maheshwari, and S. 

Maheshwari, ―Predictive Modeling of 

Brain Tumor: A Deep Learning 

Approach,‖ Adv. Intell. Syst. Comput., 

vol. 1189, pp. 275–285, 2021, doi: 

10.1007/978-981-15-6067-5_30. 

[18] S. Manjunath, M. B. Sanjay Pande, B. 

N. Raveesh, and G. K. Madhusudhan, 

―Brain tumor detection and 

classification using convolution 

neural network,‖ Int. J. Recent 

Technol. Eng., vol. 8, no. 1, pp. 34–

40, 2019, doi: 10.2139/ssrn.3507904. 

[19] N. Nandhagopal, C. Jaichander, and 

R. Ponniwalavan, ―Image 

Classification using MRI Images in 

Brain Tumor,‖ Asian J. Res. Soc. Sci. 

Humanit., vol. 6, no. cs1, p. 422, 

2016, doi: 10.5958/2249-

7315.2016.00974.6. 

[20] M. Arbane, R. Benlamri, Y. Brik, and 

M. Djerioui, ―Transfer Learning for 

Automatic Brain Tumor 

Classification Using MRI Images,‖ 

2020 2nd Int. Work. Human-Centric 

Smart Environ. Heal. Well-Being, 

IHSH 2020, pp. 210–214, 2021, doi: 

10.1109/IHSH51661.2021.9378739. 

[21] T. Sadad et al., ―Brain tumor 

detection and multi-classification 

using advanced deep learning 

techniques,‖ Microsc. Res. Tech., vol. 

84, no. 6, pp. 1296–1308, 2021, doi: 

10.1002/jemt.23688. 

[22] N. Ullah et al., ―An Effective 

Approach to Detect and Identify 

Brain Tumors Using Transfer 

Learning,‖ Appl. Sci., vol. 12, no. 11, 

2022, doi: 10.3390/app12115645. 

[23] A. Krizhevsky, I. Sutskever, and G. 

E. Hinton, ―ImageNet classification 

with deep convolutional neural 

networks,‖ Commun. ACM, vol. 60, 

no. 6, pp. 84–90, 2017, doi: 

10.1145/3065386. 

[24] T. D. Jeff Donahue∗ , Yangqing Jia∗ , 

Oriol Vinyals, Judy Hoffman, Ning 

Zhang, Eric Tzeng, ―A Deep 

Convolutional Activation Feature.,‖ 

vol. 32, 2014. 

[25] C. Tan, F. Sun, T. Kong, W. Zhang, 

C. Yang, and C. Liu, A Survey on 

Deep Transfer Learning BT - 



Vol.43, No.2. July 2024 

422 
 

Artificial Neural Networks and 

Machine Learning. 2018. 

[26] A. G. Howard et al., ―MobileNets: 

Efficient Convolutional Neural 

Networks for Mobile Vision 

Applications,‖ 2017, [Online]. 

Available: 

http://arxiv.org/abs/1704.04861 

[27] D. Kumar, P. Samui, D. Kim, and A. 

Singh, ―A Novel Methodology to 

Classify Soil Liquefaction Using 

Deep Learning,‖ Geotech. Geol. Eng., 

vol. 39, no. 2, pp. 1049–1058, 2021, 

doi: 10.1007/s10706-020-01544-7. 

[28] K. Simonyan and A. Zisserman, 

―Very deep convolutional networks 

for large-scale image recognition,‖ 

3rd Int. Conf. Learn. Represent. ICLR 

2015 - Conf. Track Proc., pp. 1–14, 

2015. 

[29] M. Ramachandran, R. Patan, A. 

Kumar, S. Hosseini, and A. H. 

Gandomi, ―Mutual Informative 

MapReduce and Minimum 

Quadrangle Classification for Brain 

Tumor Big Data,‖ IEEE Trans. Eng. 

Manag., vol. 70, no. 8, pp. 2644–

2655, 2023, doi: 

10.1109/TEM.2021.3073018. 

 

 

 

 



Vol.43, No.2. July 2024 

423 
 

 


