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 This paper introduces an effective optimization program describing the techno-economic 

analysis of a standalone hybrid PV/wind turbine/diesel generator/battery bank storage energy 

system depending on real-time information and meteorological data of New Minia city  

located in Egypt. The optimum sizing of the proposed system has been determined by using 

various-metaheuristic algorithms in addition to effective strategies such as demand side 

management (DSM), load following (LF), cycle charging (CC) to minimize the cost of 

supplied energy (COE) constrained by the loss of power supply probability (LPSP) and 

amount of dummy energy, while increasing the reliability and efficiency of the proposed 

system. An advanced optimization algorithm based Salp Swarm Algorithm (SSA) in 

comparison with various-metaheuristic algorithms have been applied for designing the 

optimum size of isolated microgrid. The simulation results showed the optimal performance 

of the SSA algorithm over the other techniques. 
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1. Introduction 

1.1. Motivation  

In light of providing a clean, sustainable and developed 

environment that relies on the use of renewable energies (RE), 

many countries have sought to reclaim remote areas and build new 

residential cities to accommodate the population increase [1,2]. 

Many feasibility studies and planning were conducted on 

electrifying these remote cities from the electrical grid. It was 

found that the connection to the electrical grid is relatively costly 

and sometimes technically constrained [3-7]. In addition to climate 

change due to reliance on fossil fuels [8,9] like diesel, natural gas, 

coal, mazut and oil, which used as prime energy sources for 

electric power generation stations, transportation, and industries 

[10,11]. These fuels are exhaustible and cause environmental 

pollution due to the spread of greenhouse gases (GHGs) [12], 

especially CO2 emissions. Accordingly, many countries began 

exploiting natural, free-cost, clean, green,  reliable, and 

environment-friendly sources [13,14], such as bioenergy, heat 

pumping technologies (HPT), geothermal, tidal, green hydrogen 

(GH), hydropower (HP), ocean, PV, solar heating and cooling 

(SHC), solar paces, and wind energy, which are the best alternative 

sources to fossil fuels. The international agency of energy (IEA) 

suggested that over the period of 2023-2028, almost 3700 GW of 

additional renewable capacity will be added. By 2028, more than 

42% of the world's power will come from renewable sources with 

an increase about 9.5% in PV and  6.1% in wind per year from 

2020 to 2028 [15], which the two most promising energy resources 

employed in Egypt. The unpredictable nature of solar radiation and 

wind speed is the main challenge [16], which forbids their use as 

individual power sources to feed microgrids. Therefore, this 

problem can be overcome by connecting the microgrid of RE 

sources to the main grid [17,18], as a two-way power flow [19], 

but connection with the grid is costly for this isolated area and 

sometimes technically constrained [20-22]. So, the recommended 

second way is to combine various renewable and traditional energy 

sources to develop an integrated hybrid RE system (IHRES) 

containing a storage system such as cell battery, FC, 

supercapacitors, flywheels (FWs), molten salt, hydroelectric 

pumped storage system (HPSS), and compressed air, in addition to 

a standby DG to provide more reliability and less cost-effective 

energy [23,24]. Therefore, this paper focalizes on determining the 

optimum size of each component in an isolated hybrid 

PV/WT/DG/battery energy system for cite of New Minia city 

located in Egypt. Depending on real-time information and 

meteorological data for the global horizontal irradiation (GHI) and 

wind speed distributions at height of 50m as shown in Figure 1 and 

Figure 2, respectively. 

1.2. Literature Review on Sizing Methods and Optimization 

Techniques 

Several studies have been introduced for techno-economic 

sizing of standalone HRES for remote areas. There are many 

configurations for hybrid energy systems, most of these depend 

mainly on energy from solar PV panels and WT with a standby 

battery bank storage system or internal combustion DG [25-27], 

Others depend on different renewable sources [28,29], where the 

surplus of energy may be stored in different energy storing devices 

[30,31]. The sizing methods can be distinguished as follows: 
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1.2.1. Sizing of Hybrid Energy System Using Software Tools 

Commercial software used as applications depending on C++ 

programming language with windows platforms such as: 

 Canadian software “RET Screen” which developed in 1998 

for sizing of energy systems with considering optimization and 

technical, financial, environmental analysis, system losses, power 

efficiency and cogeneration projects [32]. With the last update 

became multi-agent tool for sizing of solar PV panels, WTs, DG 

and battery bank integrated system based on energy production, 

total net present costs and reduction of greenhouse gas which 

reaches more than 99% depending on RE resources [33]. 

 iHOGA (Improved Hybrid Optimization by Genetic 

Algorithm) software is a multi-agent tool deals with renewable and 

conventional resources such as PV, WT, FC, hydroelectric turbines, 

battery bank storage system and internal combustion DGs, where 

it used to optimize sizing of integrated energy system  of 

PV/WT/DG/Battery for a house in Paris by reducing emissions of 

greenhouse gases specially CO2 by 73.8% and unmet load by 68% 

[34].  

 
Figure 1: The global horizontal irradiation (GHI) map of Egypt 

 
Figure 2: The wind speed distribution map of Egypt 

Hybrid2 software was developed in 1996 by laboratory  of  RE 

research (RERL) of the Massachusetts university [35], which gives 

an analysis on hybrid energy system containing PV, WT, battery 

bank storage system, power converters and dummy energy with 

high performance [36], where it used for sizing PV/WT/FC hybrid 

system in Chicago [37]. 

HOMER (Hybrid Optimization Model for Electric Renewable) 

software has developed for both grid connected and isolated grid 

ways in 1993 by the laboratory of national RE (NREL) [38]. It is 

used in Shiraz for optimum sizing of hybrid energy system based 

on PV, WT, DG and storage system of battery with minimum COE 

between 9,3 to 12,6 c/kWh and less percentage amount of dioxide 

carbon, where the RE generated reached about 43,9% from the 

global production. Input data for this software consists of load 

demand, cost of components, constraints, Resource data and 

system control [39].   

HybSim is a hybrid energy simulation software was developed 

in 1987 by laboratory of sandia national [40], for sizing of isolated 

off grid hybrid energy system with combination of PV, DG and 

battery bank storage system and gave a good techno-economic 

analysis with prediction of operation and maintenance costs for 

component and high reliability. This tool requires detailed load 

demand, meteorological data, battery characteristics and economic 

details of each component [41]. 

TRNSYS (Transient Energy System Simulation Program) 

software was developed in 1975 by Wisconsin and Colorado 

university [42]. At starting used only for thermal systems 

simulation by the time became wide simulator for hybrid energy 

systems such as solar thermal and PV for facilities which require 

heating, ventilation and air conditioning (HVAC) system with 

energy saving strategy. This tool requires load demand and 

resource data as input and develops a detailed response for thermal 

and electrical energy system [43]. 

Dymola software was developed by the solar energy institute 

(ISE) in Germany, where it has an ability to size integrated energy 

system consists of solar PV panels, WT,  DG, FC and batteries with 

LCC evaluation [44]. 

1.2.2. Sizing of Hybrid Energy System Using Traditional Methods 

Traditional methods also called as deterministic sizing 
methods. The four most commonly used methods have been 
reported by sequence as following: 

• Analytical Method  

This method deals with the hybrid energy system as a number 

of numerical equations and considers sizing of the system as 

viability function, where in South Africa operated on sizing of PV 

panels and WTs for increasing efficiency of system with 

reasonable COE about 0,97 €/kWh with about 100 GWh every 

year [45], this approach has rapid execution but low flexibility in 

general use with optimization equations. 

• Iterative Approach 

This technique is an iterative algorithm that stops when the 

optimum design of proposed system is reached with desired 

objectives, where this method used to minimize COE and 

maximize reliability of integrated energy system consists of PV 
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panels, WTs and battery bank storage system in Brazil, where the 

LCC of this system reached about 25672$ [46], this technique very 

easy in use but lacks for some important parameters such as hub 

height of WT, angle of blade rotation,  tilt angle of solar PV panels, 

parameters of different radiation type. 

• Probabilistic Methods  

The probabilistic algorithm used to size the hybrid energy 

system taking into account the fluctuation in the wind speed and 

adjustments of the system component which effect on generated 

power from WTs. This method is simple in use but is not efficient 

to give optimal values, where it used to size energy system of solar 

PV panels /WT/biomass generator/ battery bank storage system 

but it maximized the storage capacity and rating of system 

component then increase the total system cost [47], this approach 

like probabilistic method easy in use but cannot provide a hybrid 

system's dynamic performance. 

• Artificial Intelligence Methods 

This an advanced method which used to control, configure and 

size each component of integrated energy system based on 

capacity of machine to carry out comparable tasks to those that 

make up the human mind [48]. There are several methods which 

simulate artificial algorithm such as multi-objective self-adaptive 

differential evolution algorithm (MOSADE) [49], mine blast 

algorithm (MBA) [50], preference inspired coevolutionary 

algorithm (PICEA) [51], Artificial bee swarm algorithm [52], 

artificial neural network (ANN) [53], fuzzy logic [54] and discrete 

harmony search (DHS) [55]. 

1.2.3. Sizing of Hybrid Energy System Using Metaheuristic 

Algorithms 

In light of the previous review and study of different sizing 
methods we found that each method has no ability to achieve the 
best optimal solutions with the desired multi-objective function. 
So, an effective and widely applied techniques of metaheuristic 
techniques have been developed in the last decade [56]. These 
algorithms outperform all previous commercial software and 
traditional-deterministic methods in sizing of integrated RE 
systems. The most effective methodology which combines RE 
sources (solar PV panels, WTs, biomass generator, biogas 
generator, tidal…etc.) with traditional energy sources (DG) is 
called hybridization. We will review some artificial algorithms 
used in sizing of solar PV panels/WT /DG/battery bank energy 
system with different objective functions as summarized in Table 
1  and illustrated as following: 

In [57,58], a practical strategy called strength pareto 
evolutionary algorithm (SPEA) was used to optimize size of a solar 
PV panels /WT/DG hybrid energy system with minimization of 
total system cost and released amount of greenhouse gases, 
consequently two objective functions are used.   

 In [59-61], an efficient optimization technique called genetic 
algorithm (GA) has been developed to size and configure a solar 
PV panels /WT/battery hybrid energy system with multi-objective 
function such as maximizing reliability of the system under any 
uncertainty of wind speed and solar radiation, minimizing the LCC 
of the system and the LPSP.  

In [62,63], an adaptive artificial method called particle swarm 
optimization (PSO), while it the most commonly used strategy for 
optimum sizing of hybrid energy system consists of 
PV/WT/DG/battery storage system with uncertainty consideration 
of natural resources. Also, in [64], PSO has been introduced to 
sizing a hybrid PV/WT/FC/electrolyzer/hydrogen tank /battery 
banks system with taking uncertainty of wind generation and 
reliability constraints of the system. 

In [65], the simulated annealing algorithm (SAA) is 
optimization techniques has been applied to optimize size of 
integrated RE system of a PV/WT, where the algorithm operates 
on minimization of LCC of the system as an objective function. 

In [66], a new algorithm called response surface methodology 
(RSM) has been applied in order to provide an optimum size  of an 
integrated solar PV panels/WT/battery bank system with 
minimizing of LPSP and consumed amount of fossil fuel after that 
all results are compared with outcomes from previous simulated 
annealing algorithm. 

In [67], depending on previous two adaptive optimization 
techniques (PSO and GA) any mathematical models of hybrid 
energy system can be introduced and then several objective 
optimizations were performed. 

In [68], a featured comparison between results of the two 
effective algorithms (PSO and GA) where the used objective 
functions are maximizing reliability and minimizing the LCC of 
the system from the comparison, we found that the PSO approach 
presented its strength in terms of convergence, speed, and accuracy 
for handling the optimization issues. 

In [69,70], a modified adaptive technique called multi-
objective particle swarm optimization (MOPSO) has been 
implemented in order to minimize energy cost (COE), increase the 
system dependability and decrease outage of the feeding system 
for a hybrid PV/WT/FC/hydrogen storage system, where all results 
are compared with outcomes from particle swarm optimization 
method and it has proven its efficiency and ability to investigate. 

In [71], a new effective combination of two optimization 
strategies; the first is sequential Monte Carlo simulation (SMCS) 
and the other is pattern search (PS), where this combination is used 
to optimize the sizing of hybrid energy system with reducing the 
system's LCC and fulfilling the system's reliability requirements. 
Additionally, a comparison with a hybrid GA-SMCS was 
conducted, and the results showed that the PS-SMCS performed 
better. 

In [72], a modified meta-heuristic optimization method called 
cuckoo search algorithm (CS) has been developed to optimize size 
of isolated PV/WT/DG/battery energy system, where this method 
proved its strength in accurate results compared with genetic 
algorithm (GA) and particle swarm optimization (PSO). 

In [73], a modern techniques called multi-objective self-
adaptive differential evolution (MOSADE) algorithm designed to 
optimize size of a PV/WT/DG/battery hybrid energy system in city 
of Yanbu (KSA), where reduction of processing time is the multi-
objective function.  

In [74], an adaptive artificial method called artificial bee 
colony algorithm (ABC) has been developed to size and model a 
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on-grid solar PV panels /WT/battery integrated energy system with 
optimal cost of COE and highest reliability. 

In [75], a modified effective technique called improved 
arithmetic optimization algorithm (IAOA) that created by 
modifying the original arithmetic optimization algorithm (AOA), 
while it has been used for giving the optimal size of a 
PV/WT/DG/battery also for PV/DG/battery hybrid energy system 
with minimizing the total system cost as an objective function. 

Table 1: Comparison between metaheuristic algorithms for 

sizing of hybrid energy system components 

 

In [76], a newly created meta-heuristic optimization method 
known as whale optimization algorithm (WOA), water cycle 
algorithm (WCA) and moth-flame optimizer (MFO) are used 
strategy for optimizing size of integrated energy system consists of 
PV/WT/DG/battery storage system with reducing the system's 
LCC, fulfilling the reliability criteria in addition to efficiency of 
the system presented by LPSP. 

1.3. Energy Saving and Reliability Concepts 

Incoordination between load demand and available generation 
from different energy sources is the most issue which face the 
performance of microgrid where it increases COE due to huge 
expansion of the generation and distribution networks to satisfy 
amount of load demand at any time in addition to forcing most of 
energy sources to operate out of their rated capacity often at their 
maximum rating during peak load periods [77]. Therefore, 
balancing the load value with the available generated energy it 
might be beneficial to reduce these demands to avoid the need for 
more costly installations [78].   

The load curves should be flexible as possible as it can for a 
number of reasons, lightening the strain on equipment of generated 
power consequently allow the microgrid's protection devices to 
operate as intended, in addition to minimizing costs of generated 

energy and saving energy band for future load expansion. 
Accordingly, we will present and apply strategies of demand-side 
management (DSM). Reliability of any system is very important 
aspect, where a measure of system strength. It depends on nature 
of source with load at any internal and external faults which very 
important in determining the optimum size as following: 

1.3.1. Demand Side Management Strategy 

Desire for matching the load demand with available generation 
to overcome the peak load periods. DSM has several techniques, 
including “peak clipping, valley filling, load shifting, energy 
conservation, load building and flexible load shape” [79]. Which 
are illustrated in Figure 3 and described as following [80]: 

 
Peak clipping: This strategy is used when the capacity of the 

microgrid cannot satisfy the loads during the peak periods where 
this technique has been used to decrease load demand at peak times. 
Often, this is achieved by either forcing consumers to change their 
consumption patterns by raising the energy price (Electricity tariff) 
or by turning off particular appliances during peak hours. 

 
Valley filling: This strategy is used to raise loads at off-peak 

times when generation exceeds loads in order to raise average 
energy consumption. In order to reduce the price of energy 
(electricity tariff), this strategy can be implemented by turning on 
low-importance loads and encouraging consumers to do activities 
like loading and charging during off-peak hours.  

Load shifting: This strategy is used to shift low priority loads 
from peak to off-peak times without changing the pattern of energy 
consumption. Customers can store thermal heat during valley 
hours, for instance, and utilize it to keep the room warm all day. 
To prevent peak loading, it is also possible to increase the load 
factor of the load curve and get past the crucial peaks and valleys 
by running other household appliances like the dishwasher and 
washing machines at night. This can be achieved by raising the 
price of energy during peak hours and lowering it during off-peak. 

 
Flexible load shape: This strategy sometimes called dynamic 

load management where the load is controlled according to the 
amount of generated energy that is available and it may be handled 
in exchange for the advantages. Using a dynamic electricity tariff 
to maintain price increases and decreases is one way to implement 
this technique. 

Load conservation: This strategy sometimes called energy 
saving technique where is applied to use energy-efficient 
technologies to reduce the demand for energy additionally 
achieved by increasing the electricity bill or shutting down 
unnecessary loads, both of which lower load demand and change 
load shape.  

Load building: This strategy is used to raise load during the 
load period because generation exceeds demand; load increases are 
necessary to keep the system stable, improve load-sharing, and 
boost grid responsiveness through energy storage systems. The 
energy price can be raised to achieve this. 
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Figure 3: Demand-side management strategies 

1.4. Contribution and Paper Organization 

Starting with the requirement to harness RE sources to their 
fullest in order to diversify the production of power, this paper 
provide a cost-effective optimized design of an isolated RE system 
consists of integrated PV/WT/DG/battery bank based on high 
performance optimization techniques based SSA algorithm in 
comparison with some other meta-heuristic techniques. Depending 
on successful strategies like DSM, CC, and LF to reduce the 
amount of dummy energy and the LPSP, which limit the COE, 
while increasing the reliability and efficiency of the presented 
system. The following succinctly describes the primary 
contributions of this paper:  

• System analysis has been introduced by high-efficient 
metaheuristic algorithms for tackling design problem of 
integrated RE system, which outperform all commercial 
software and traditional-deterministic methods. We have 
produced a detailed review and analysis along with a thorough 
comparison of various methods.  

• Considering the multi-objective function that this study 
suggests in order to establish the optimum size of each 
component in a stand-alone hybrid PV/WT/DG/battery bank 
energy system through assessing the minimum COE, LPSP 
and amount of dummy energy at highest reliability and 
performance It resulted in considerable enhancements to the 
system's functionality. 

• Providing a detailed methodology to achieve the HRES's 
maximum power output and the lowest cost of the energy it 
supplies. 

• Utilizing efficient techniques like DSM, CC, and LF with 
different techniques such as load shifting, peak clipping, 
energy conservation, valley filling, flexible load shape and 
load building, which have significant effect on satisfying the 

load demand and decreasing the system's component sizes. 
and lastly, the life cycle cost. 

• Supplying the solar radiation and wind speed data for city of 
New Minia located in Egypt, they are obtained from two 
sources:  

o The National Space and Aeronautics Authority (NASA) data. 

o The meteorological data' long-term average over a 20-year 
period of observation. 

• To the best of the author' knowledge, generally speaking, in 
order to develop this planned remote area, this is the first 
attempt to optimize the system components based on 
meteorological data and real-time information of New Minia 
city, situated in Egypt. 

2. Development of an IHRES 

The following stages explain a systematic approach that is 
necessary to implement an IHRES for isolated communities: 

2.1.  Identification of Study Area 

The New Minia city of Minia governorate in Egypt is 
considered as a study area, where the city is located on the right 
bank of the Nile across from Old Minia. Figure 4 displays its 
location on a map. It is located at a height of 123 meters above 
mean sea level, in latitude 28.0986° N and longitude 30.8327° E. 

2.2. Visualization of Electrical Demand 

This study based on supply electricity to utilities and 
infrastructure sector in the New Minia city which can be 
summarized in residential, commercial and industrial sector with 6 
districts, clubs’ area, build your own house areas, roads, 
communications and extension area networks are being 
implemented. In addition to a wells plant of drinking water, 
sanitation plant of 4 pumping and cultivation of green areas and 
forestation. Figure 5 shows the hourly load power used for the 
system in this work, which has an average load demand of around 
2.25*104 kW, a peak load of 4.2*104 kW, and a minimum load of 
0.7*104 kW. 

2.3. Assessment of Natural Resources 

Meteorological data develops the average annual wind speed 
at the New Minia city, which is approximately 5.19 m/s at 10m 
height (Anemometer suspension level) as shown in Figure 6. 
Furthermore, meteorological data represents the annual average 
curve of solar energy for the selected site, where Figure 7 
illustrates the average 24 years (1994-2018) that the study took into 
account for the simulation, which around 6.05 kwh/m2/day. The 
annual average curve of ambient temperature from meteorological 
data is shown in Figure 8. In the simulation, the study took into 
account a 24-year average (1994–2018) with an average 
temperature of 25.58ºC (78.04ºF). 
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Figure 4: The location of the studied village, namely The New 
Minia city located in the middle-east of Egypt 

 
Figure 5: Hourly load power for the New Minia city 

 

After looking at the meteorological data for the studied site, 
including the average annual wind speed, solar energy, and 
ambient temperature, we came to the conclusion that this location 
is ideal for utilizing some RE sources. Such as solar PV panels and 
wind farms, which are thought to be sustainable and likely to be 
financially competitive given that their costs are significantly 
lower in the medium range than those of traditional energy sources. 

Furthermore, the utilization of sustainable energies confers 
significant benefits to isolated areas, especially for the availability 
of energy resources to those who are currently without them.  

 
Figure 6: The average annual wind speed of the New Minia city 

. 

 
Figure 7: The average annual solar energy of New Minia city 

 

Figure 8: The hourly ambient temperature for the site of the 
New Minia 

For economic reasons, sustainable energy has been completely 
ignored up to this moment. However, the trend in recent years has 
been toward sustainable energy instead than conventional energy. 

 

3. Mathematical Modelling of the IHRES Components 

A proper mathematical modeling of the component parts is 
required before determining the ideal size for the IHRES. In 
addition to solar and wind energy, the research suggests an IHRES-
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model that includes a DG as a backup power and a battery bank 
storage system. The shortage of electricity in the city of New Minia 
may be economically resolved with construction of an integrated 
PV/WT/DG/battery bank hybrid RE system. Seven primary 
components make up the proposed hybrid microgrid system under 
study, as represented in Figure 9. These include solar PV modules, 
WTs, a DG, a battery bank storage system, a bi-directional power 
converter, a dump load, and a service load.  

3.1. Wind Energy System Model 

Wind resources and WT's capacity to generate energy at a 
certain location are affected by wind speed at hub height, WT 
speed characteristics, and land surface type. Given the wind speed 
observed at the anemometer height, where the wind speed at the 
required hub height may be expressed as follows [87]: 

                                 𝑢(ℎ) = 𝑢(ℎ𝑎) (
ℎ

ℎ𝑎
)
𝛼

                               (1) 

Where, 𝑢(ℎ) is the wind speed at hub height in (m/s), 𝑢(ℎ𝑎) is 
the measured wind speed in (m/s), and 𝛼 is roughness factor which 
varies periodically and from site to site. As per the guidelines 
provided by IEC standards [88], according to calculations, the 
coefficient of friction is 0.20 under normal wind conditions and 
0.11 in strong wind conditions and has been taken by (1/7) in this 
paper. 

 

Figure 9: The configuration of the IHRES 

The basic formula that controls the WT's mechanical output 
power estimated as follows: 

                                𝑃𝑚𝑒𝑐ℎ = 
1

2
𝜌𝐴𝐶𝑝𝑢

3                                (2) 

Where, 𝐴  is the rotor blade swept area (m2), 𝑢  is the wind 
speed (m/s), 𝐶𝑝  is the WT's power coefficient, and 𝜌  is the air 

density (kg/m3). The power coefficient 𝐶𝑝 sometimes called Betz's 

coefficient, it is the function of the rotor tip-speed to wind speed 
ratio (λ) as follows, with a theoretical maximum value of 0.593 
[89]: 

                                         𝜆 =  
𝜔𝑅

𝑢
                                         (3)                                         

Where, 𝑅  is the WT radius (meters), and 𝜔  is the turbine's 
angular velocity (rad/sec). The features of a WT's power 
production at a constant wind speed are displayed in Figure 10. 

 

Figure 10: Wind turbine power characteristics 

The wind speed at which a turbine initially turns and starts to 
generate energy is referred to as the "cut-in speed." Cut-off speed 
is the high wind speed that puts significant stresses on the turbine 
construction and raises the risk of rotor damage. The braking 
mechanism is utilized to stop the rotor in order to avoid damage. 
The rated power output of an electrical generator is the wind speed 
that falls between the cut-in and cut-off speeds, at which point the 
generator's maximum power output is achieved. 

Based on the normal power curve parameters of the WT, the 
estimated power delivered by the turbine 𝑃𝑊𝑇  may be described as 
the following [90,91]: 

𝑃𝑊𝑇 = 

{
 
 

 
 

  

0                                                     𝑢(𝑡) < 𝑢𝑐𝑢𝑡−𝑖𝑛
𝜂𝑊𝑇∗𝑃𝑅𝑊𝑇

∗(𝑢2(𝑡)−𝑢2𝑐𝑢𝑡−𝑖𝑛)

𝑢2𝑟𝑎𝑡𝑒𝑑− 𝑢
2
𝑐𝑢𝑡−𝑖𝑛

         𝑢𝑐𝑢𝑡−𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑟𝑎𝑡𝑒𝑑

𝜂𝑊𝑇 ∗ 𝑃𝑅_𝑊𝑇                                  𝑢𝑟𝑎𝑡𝑒𝑑 < 𝑢(𝑡) ≤ 𝑢𝑐𝑢𝑡−𝑜𝑓𝑓

0                                                     𝑢(𝑡) > 𝑢𝑐𝑢𝑡−𝑜𝑓𝑓

   () 

Where, 𝑁𝑊𝑇 is the number of used WTs, 𝑢𝑐𝑢𝑡−𝑖𝑛 is the cut-in 
wind speed, 𝑢𝑟𝑎𝑡𝑒𝑑 is the rated wind speed and 𝑢𝑐𝑢𝑡−𝑜𝑓𝑓 is the cut-

off wind speed; and 𝑃𝑅_𝑊𝑇  is the rated WT output power. 

The wind energy capacity at any particular location may be 

estimated statistically by analyzing the wind speed data using the 

Weibull distribution. There are several methods for computing the 

Weibull parameters k and c. The probability density function for 

wind speed (u) in a two-parameter distribution as following [92]:  

    𝑓(𝑢) =  
𝑘

𝑐
∗ (

𝑘

𝑐
)
𝑘−1

∗ 𝑒𝑥𝑝 [− (
𝑢

𝑐
)
𝑘
]      𝑤ℎ𝑒𝑟𝑒, (𝑘 ˃0, 𝑢 ˃0, 𝑐 ˃ 0)    (6) 

Where, 𝑘 is the shape parameter and 𝑐 are the scale parameter, 
and the following formula may be used to get the cumulative 
distribution function (𝑢) :  

                           𝐹(𝑢) = 1 − 𝑒𝑥𝑝 [− (
𝑢

𝑐
)
𝑘

]                           (7) 

The following formulas are the Weibull parameters' final 
results:  
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                              𝑘 = 𝑎         𝑎𝑛𝑑        𝑐 = (−
𝑏

𝑘
)                       (8) 

Where, parameters a and b can be estimated respectively, as the 
following: 

    𝑎 = (∑ (𝑥𝑖 − 𝑥̅) ∗  ∑ (𝑦𝑖 − 𝑦̅))/(∑ (𝑥𝑖 − 𝑥̅)
2)𝑤

𝑖=1
𝑤
𝑖=1

𝑤
𝑖=1      (9) 

              𝑏 = 𝑦̅
𝑖
− 𝑎𝑥𝑖 = (

1

𝑤
∑ 𝑦𝑖 − 

𝑎

𝑤
∑ 𝑥𝑖)
𝑤
𝑖=1

𝑤
𝑖=1                (10) 

       𝑦𝑖 = 𝑙𝑛 (−𝑙𝑛(1 − 𝐹(𝑢𝑖)))       𝑎𝑛𝑑       𝑥𝑖 = ln (𝑢𝑖)     (11) 

Where, w is the number of non-zero wind speeds, 𝑢𝑖  is the 
wind speed (m/s) at time step i, and 𝑥𝑖 and 𝑦𝑖 's average values are 
𝑥̅ and 𝑦̅ ,respectively. 

This formula that may be used to find the capacity factor at 
𝐶𝐹  a certain location as the following: 

𝐶𝐹 = 
𝑒𝑥𝑝[−(

𝑢𝑐𝑢𝑡−𝑖𝑛
𝑐

)
𝑘
]−𝑒𝑥𝑝[−(

𝑢𝑟𝑎𝑡𝑒𝑑
𝑐

)
𝑘
]

(
𝑢𝑟𝑎𝑡𝑒𝑑

𝑐
)
𝑘
−(

𝑢𝑐𝑢𝑡−𝑖𝑛
𝑐

)
𝑘 − 𝑒𝑥𝑝 [− (

𝑢𝑐𝑢𝑡−𝑜𝑓𝑓

𝑐
)
𝑘

]   (12) 

The energy produced from WT panels (𝐸𝑊𝑇) is calculated as 
the following: 

                       𝐸𝑊𝑇(𝑡) = 𝑁𝑊𝑇 ∗ 𝐶𝐹 ∗ 𝑃𝑊𝑇(𝑡) ∗ ∆𝑡               (13) 

Where, ∆𝑡 represents the time interval and is equivalent to one 
hour. 

3.2. Solar Energy System Model 

In the literature, several models for calculating PV output 
power have been put forth. The output power of a PV panel has 
been determined in this research using a simplified model. 𝑃PV(t) 
based on the research area's hourly solar radiation G(t) and hourly 
ambient temperature 𝑇𝑎𝑚𝑏  [92] may be estimated as the following:  

 𝑃PV(t) = 𝑃𝑉panel_rating ∗ (
G(t)

𝐺ref
) ∗ [1 + 𝐾T ∗ (𝑇C − 𝑇ref)]  (14) 

Where, 𝑃𝑉𝑝𝑎𝑛𝑒𝑙_𝑟𝑎𝑡𝑖𝑛𝑔  is the PV panel rated power, 𝐺ref   is 

solar radiation used as the reference condition, with a value of 1000 
(W/m2), 𝐾T  is the temperature coefficient of maximum power, 
with a value of 3.7×10-3 (1/0C), 𝑇C  is the cell average annual 
temperature (0C) and 𝑇ref  is the temperature of the PV cell in 
standard test conditions (STC), with a value of 250C. 

The cell averages annual temperature 𝑇C may be calculated as 
the following: 

                  𝑇𝐶(𝑡) = 𝑇𝑎𝑚𝑏 + [(
𝑁𝑂𝐶𝑇−20

0.8
) ∗ (

𝐺(𝑡)

𝐺𝑟𝑒𝑓
)]               (15) 

Where, 𝑇amb is the ambient temperature (0C), and 𝑁𝑂𝐶𝑇 is the 
normal cell temperature during operation. with a value of 450C for 
the selected PV module under study. 

The energy generated 𝐸PV(t) from number of PV panels 𝑁PV 
is calculated as the following: 

                           𝐸PV(t) = 𝑁PV ∗ 𝑃PV(t) ∗ ∆𝑡                      (16) 

where, ∆𝑡 represents the time interval and is equivalent to one hour. 

3.3. Battery Storage System Model 

In most cases, the battery bank supplies the system during 
periods of high load demand or when RE supplies are unavailable. 
We'll store any excess energy generated by the RE resources in the 
battery bank. The energy stored in the battery bank at each given 
hour " t + 1" is represented by the following formulae [93, 94]: 

𝐸Bat(t + 1) = (1 −  𝜎) ∗ 𝐸Bat(t) + (𝑃Gen(t) −
𝑃𝐿𝑜𝑎𝑑(𝑡)

𝜂𝐶𝑜𝑛𝑣
) ∗ ∆𝑡 ∗

                                                𝜂𝐶𝐶 ∗ 𝜂𝐵𝐶                                        (17) 

During the discharge process, the electrical power produced by 
the RE resources is insufficient to meet the load requirement. As a 
result, the battery bank is capable of providing the necessary 
shortfall load, which is as the following: 

𝐸Bat(t + 1) = (1 −  𝜎) ∗ 𝐸Bat(t) − ((
𝑃𝐿𝑜𝑎𝑑(𝑡)

𝜂𝐶𝑜𝑛𝑣
− 𝑃Gen(t)) /

                                               𝜂𝐵𝐷) ∗ ∆𝑡                                         (18) 

Where, 𝑃𝐿𝑜𝑎𝑑(𝑡) is the load power demand, 𝑃Gen(t) is the total 
electrical power generated, and 𝜎 is the rate of self-discharge every 
hour. For most batteries, the manufacturer's datasheet recommends 
a value of 0.2% per day [59]. Battery charging and discharging 
efficiencies are represented by 𝜂𝐵𝐶  and 𝜂𝐵𝐷, which are estimated 
to be 90% and 85%, respectively, [95]. Bi-directional converter 
efficiency is represented by 𝜂𝐶𝑜𝑛𝑣, which is estimated to be 95% 
[96]. 

The amount of power produced by the RE resources, 𝑃𝐺𝑒𝑛(𝑡) 
is calculated as the following: 

                  𝑃𝐺𝑒𝑛(𝑡)  = [𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡)] ∗ 𝜂𝐶𝑜𝑛𝑣             (19) 

3.4. Diesel Generator Backup System Model 

Internal Combustion DGs are useful in isolated grid areas 
because they supply electricity when RE sources are interrupted by 
protracted cloud cover or wet seasons, or in the event that batteries 
cannot supply the required load. Based on the necessary load 
demand, the DG hourly fuel consumption (𝐹𝐷𝐺) may be computed 
using the following linear rule [93]: 

   𝐹𝐷𝐺(𝑡)  = [𝑎𝐷𝐺 ∗ 𝑃𝐷𝐺_𝐺𝑒𝑛(𝑡) + 𝑏𝐷𝐺 ∗  𝑃𝐷𝐺_𝑟𝑎𝑡𝑖𝑛𝑔]  (𝑙/ℎ)     (20) 

Where, the fuel consumption curve for DG, the coefficients 
𝑎𝐷𝐺  and 𝑏𝐷𝐺  have the values 𝑎𝐷𝐺  = 0.246 ( 𝑙 /kwh) and 𝑏𝐷𝐺  = 
0.08145 (𝑙/kwh), respectively [58,97]. The DG's rated power and 
hourly generated power are indicated by 𝑃𝐷𝐺_𝑟𝑎𝑡𝑖𝑛𝑔  and 

𝑃𝐷𝐺_𝐺𝑒𝑛(𝑡),  respectively.  

The following formula is used to get the DG annual fuel 
consumption (AFC):  

                                         𝐴𝐹𝐶 = ∑ 𝐹𝐷𝐺(𝑡)

8760

𝑡=1

                                (21) 

3.4.1. CO2 Emissions  

DG's hourly fuel usage and 𝐶𝑂2 emissions may be estimated 
as follows [98]:  

                  𝐶𝑂2(𝑡)  = 𝑆𝐸𝐶𝑂2(𝑘𝑔/𝑙)  ∗  𝐹𝐷𝐺(𝑡) (𝑙/ℎ)          (22) 

where, the specific 𝐶𝑂2  emissions per liter of diesel are 
represented by 𝑆𝐸𝐶𝑂2 , and its value is 2.7 𝑘𝑔/𝑙. 
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The following is an estimation of the DG's yearly 𝐶𝑂2 
emissions: 

                         𝐴𝑛𝑛𝑢𝑎𝑙𝐶𝑂2_𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = ∑ 𝐶𝑂2(𝑡)

8760

𝑡=1

             (23) 

3.5. Bidirectional or Dual Converter with a Charge Controller 

(BDC-CC) Model 

Generally speaking, electrical energy is converted by the BDC-
CC into rectifier and inverter operating modes. In the inverter 
mode, it converts Direct Current (DC) to Alternate Current (AC), 
and in the rectifier mode, it converts AC to DC. To make sure the 
battery bank is neither over-charged nor over-discharged, the 
charge controller is helpful. The following formulas is used to 
compute the BDC-CC power rating (𝑃𝐵𝐷𝐶−𝐶𝐶) depending in 
mode of operation [78]: 

• Wind turbine produces more power than demand load 
𝑃𝑊𝑇(𝑡) > 𝑃𝐿𝑜𝑎𝑑(𝑡) or in another form power that generated 
from both WTs and PV panels very larger than demand load 
𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) ≫ 𝑃𝐿𝑜𝑎𝑑(𝑡)  where, the converter starts to 
charge battery ( 𝑖𝑓 𝐸Bat(t) < 𝐸𝐵𝑎𝑡_𝑚𝑎𝑥 ). So, sizing of the 

BDC-CC may be estimated as the following: 

               𝑃𝐵𝐷𝐶−𝐶𝐶(𝑡)  = [𝑃𝑊𝑇(𝑡) − 𝑃𝐿𝑜𝑎𝑑(𝑡)] ∗ 𝜂𝐶𝑜𝑛𝑣        (24) 

• WT produces less power than demand load 𝑃𝑊𝑇(𝑡) <
𝑃𝐿𝑜𝑎𝑑(𝑡) or 𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) > 𝑃𝐿𝑜𝑎𝑑(𝑡) and  (𝑖𝑓 𝐸Bat(t) <
𝐸Bat_max) battery starts to charge, but if it is charged all surplus 

power will flow to the dump load. So, sizing of the BDC-CC 
may be estimated as the following: 

                  𝑃𝐵𝐷𝐶−𝐶𝐶(𝑡)  = [𝑃𝑃𝑉(𝑡) − 𝑃𝐵𝐶(𝑡)] ∗ 𝜂𝐶𝑜𝑛𝑣         (25) 

• WT and PV panels  produce less power than demand load 
𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) < 𝑃𝐿𝑜𝑎𝑑(𝑡) , where deficit in power of 
demand load is supplied from battery bank but (𝑖𝑓 𝐸Bat(t) >
𝐸Bat_min ), so discharged power from battery starts flows 

through the converter towards the load. So, sizing of the BDC-
CC may be estimated as the following: 

                 𝑃𝐵𝐷𝐶−𝐶𝐶(𝑡)  = [𝑃𝑃𝑉(𝑡) + 𝑃𝐵𝐷(𝑡)] ∗ 𝜂𝐶𝑜𝑛𝑣         (26) 

The previous formulas may be used to calculate the necessary 
PWM converter rated power based on the simulation's findings 
[99]. 

3.6. System Reliability Model 

Reliability is the ability of the power system to deliver energy 
for a predetermined period of time under specific conditions. In 
this study, the power dependability of the IHRES is assessed using 
the 𝐿𝑃𝑆𝑃 , which is calculated by adding the hours of a power 
outage to the sum of hourly energy demands. Calculating the 𝐿𝑃𝑆 
at any hour "t" is done using the formula below [100]:  

𝐿𝑃𝑆(t) =
𝑃𝐿𝑜𝑎𝑑(𝑡)

𝜂𝐶𝑜𝑛𝑣
− 𝑃𝐺𝑒𝑛(𝑡) − [(1 −  𝜎) ∗ 𝐸Bat(t + 1) −

                                            𝐸Bat(t)] ∗ 𝜂𝐵𝐷                                    (27) 

The LPSP is calculated as follows [134]: 

                                   𝐿𝑃𝑆𝑃 =
∑ 𝐿𝑃𝑆(t)8760
𝑡=1

∑ 𝑃𝐿𝑜𝑎𝑑(𝑡)
8760
𝑡=1

                              (28) 

3.7. Economic Analysis of The Off-Grid IHRES 

The IHRES's economic sustainability has been evaluated using 
a variety of methods, including Net Present Cost, Annual 
Levelized Cost, 𝐿𝐶𝐶 , and Payback Period. Since the 𝐿𝐶𝐶 
technique offers an exact representation of project costs during the 
project's life cycle, it is often used in these scenarios for economic 
analysis. Using the following formula [100], the 𝐿𝐶𝐶  of the 
IHRES is determined in this study by adding all costs associated 
with system component replacement, erection, initial capital, 
𝑂&𝑀, and fuel. 𝐶𝑂𝐸 is one of the most prominent and extensively 
used indicators in IHRES economic approach, and may be 
computed as follows [75]: 

                                   𝐶𝑂𝐸 =  
𝐿𝐶𝐶∗𝐶𝑅𝐹(𝑖,𝑇)

∑ 𝑃𝐿𝑜𝑎𝑑(𝑡)
8760
𝑡=1

                         (32) 

where, 𝑇 is the project lifetime in years. In this study is chosen as 
25 years. 𝑖 is the real net interest rate, and 𝐶𝑅𝐹 is the factor for 
capital recovery which can be computed by applying the following 
formula [59] 

                                 𝐶𝑅𝐹(𝑖, 𝑇) =  
𝑖∗(1+𝑖)𝑇

(1+𝑖)𝑇−1
                          (33) 

The discount rate be computed by applying the following 
formula [79]: 

                                         𝑦 =  
𝑖𝑛𝑜𝑚−𝑓

1+𝑓
                                 (34) 

 
where, the yearly nominal interest rate is denoted by 𝑖𝑛𝑜𝑚. About 
8.25% is found in this research [101]. A yearly inflation rate is 
denoted by 𝑓. This study's estimate is 4.9% [102]. 

The life cycle cost (𝐶𝐿𝑖𝑓𝑒_𝐶𝑦𝑐𝑙𝑒)  of the overall project can be 

estimated by using the following formula: 

𝐿𝐶𝐶 = 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑝𝑖𝑡𝑎𝑙  +  𝐶𝑂&𝑀 + 𝐶𝑅𝑒𝑝  +  𝐶𝐹𝑢𝑒𝑙  − 𝑉𝑆𝑐𝑎𝑟𝑝    (35) 

where, 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑝𝑖𝑡𝑎𝑙  is the initial capital costs, 𝐶𝑂&𝑀  is the 

operation and maintenance costs, 𝐶𝑅𝑒𝑝  is the replacement costs, 

𝐶𝐹𝑢𝑒𝑙  is the fuel costs, 𝐶𝐸𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is the erection costs and 𝑉𝑆𝑐𝑎𝑟𝑝 is 

the scrap present value of each component of the IHRES. 

Costs of installation, civil works, electrical testing, and 
commissioning are all included in 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑝𝑖𝑡𝑎𝑙 . This paper 

assumes that the costs of installation and civil works account for 
20% of WT system costs and 40% of solar system costs, 
respectively [99]. 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑝𝑖𝑡𝑎𝑙  may be estimated as the 

following: 

𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑝𝑖𝑡𝑎𝑙  = 𝐶WT ∗ 𝑃𝑅𝑊𝑇
∗ 𝑁WT + 𝐶𝑃𝑉 ∗

  𝑃𝑉𝑝𝑎𝑛𝑒𝑙_𝑟𝑎𝑡𝑖𝑛𝑔 ∗  𝑁PV + 𝐶Bat ∗ 𝑆𝐵𝑎𝑡𝑟𝑎𝑡𝑖𝑛𝑔 ∗  𝑁Bat + 𝐶DG ∗

                        𝑃𝐷𝐺_𝑟𝑎𝑡𝑖𝑛𝑔 ∗ 𝑁DG + 𝐶BDC−CC ∗ 𝑃𝐵𝐷𝐶−𝐶𝐶               (36) 

where, 𝐶WT is the cost of WT including civil works ($/kw), 𝑃𝑅𝑊𝑇
 

is the rated WT output power, 𝑁WT is the number of used WTs, 
𝐶𝑃𝑉  is the cost of PV panels including civil works ($/kw), 
𝑃𝑉𝑝𝑎𝑛𝑒𝑙_𝑟𝑎𝑡𝑖𝑛𝑔 is the PV panel rated power, 𝑁PV is the number of 

PV panels, 𝐶Bat is the COE storage batteries ($/kw), 𝑆𝐵𝑎𝑡𝑟𝑎𝑡𝑖𝑛𝑔 is 

the rating of battery bank, 𝑁Bat is the number of battery cells, 𝐶DG 
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is the cost of DG system, 𝑃𝐷𝐺𝑟𝑎𝑡𝑖𝑛𝑔 is the DG system's rated power 

and 𝑁DG is the number of DGs. 

The estimated 𝐶𝑂&𝑀values are compiled in this paper after a 
thorough analysis of several research [102-105]. This may be 
computed using the following formula [106]: 

                     𝐶𝑂&𝑀 = ∑ 𝐶𝑂&𝑀(1)
𝑇
𝑗=1 ∗ (

1

(1+𝑖)𝑗
)                   (37) 

where, 𝐶𝑂&𝑀(1)  is the project's first-year operating and 
maintenance costs. There is another formula which can be 
expressed as: 

𝐶𝑂&𝑀 = 𝐶𝑂&𝑀_WT ∗ 𝑇WT +  𝐶𝑂&𝑀_PV ∗ 𝑇PV + 𝐶𝑂&𝑀_Bat ∗
              𝑇Bat + 𝐶𝑂&𝑀_𝐷𝐺 ∗ 𝑇𝐷𝐺 + 𝐶𝑂&𝑀_𝐵𝐷𝐶−𝐶𝐶 ∗ 𝑇𝐵𝐷𝐶−𝐶𝐶        (38)                                      

where, 𝐶𝑂&𝑀_WT , 𝐶𝑂&𝑀_PV , 𝐶𝑂&𝑀_Bat , 𝐶𝑂&𝑀_𝐷𝐺  and 𝐶𝑂&𝑀_𝐵𝐷𝐶−𝐶𝐶 

are the cost of maintenance and operation for each component of 
time for WTs, PV panels, battery storage systems, DGs, and 
bidirectional converters. While, 𝑇WT, 𝑇PV, 𝑇Bat, 𝑇DG and 𝑇𝐵𝐷𝐶−𝐶𝐶  
are the operating time of WTs, PV, battery storage banks, DG and 
bidirectional converter, respectively. 

The following formula may be used to determine the present 
value of the replacement cost of the hybrid system components 
𝐶𝑅𝑒𝑝 over the period of the system's lifespan: 

             𝐶𝑅𝑒𝑝 = ∑ [𝐾𝑅𝑒𝑝
𝑁𝑅𝑒𝑝
𝑗=1

∗ 𝐶𝑢 ∗ (
1

(1+𝑖)
)
(𝑇∗

𝑗

𝑁𝑅𝑒𝑝+1
)

]       (39) 

Where, 𝐾𝑅𝑒𝑝 , 𝐶𝑢  and 𝑁𝑅𝑒𝑝  are the replacement components 

capacity (kw for WT system, PV panels, DG and bidirectional 
converters and kwh for batteries), the costs of the replacement 
components ($/kw for WT system, PV panels, DG and 
bidirectional converters, and $/kWh for batteries) and the number 
of replacements during the lifespan of the project T, respectively. 

The fuel cost of 𝐶𝐹𝑢𝑒𝑙 , can be calculated from the following 
formula: 

                        𝐶𝐹𝑢𝑒𝑙  = (∑ 𝐹𝐷𝐺(𝑡)
8760
𝑡=1 ) ∗ 𝑃𝐹𝑢𝑒𝑙                        (40) 

where, ∑ 𝐹𝐷𝐺(𝑡)
8760
𝑡=1  is the DG annual fuel consumption (l), 𝑃𝐹𝑢𝑒𝑙  

is the price of fuel per liter, where (The price of fuel is taken in this 
paper 0.8 $/l). 

This following formula may be used to determine the 𝑉𝑆𝑐𝑎𝑟𝑝 : 

              𝑉𝑆𝑐𝑎𝑟𝑝 = ∑ [
𝑁𝑅𝑒𝑝+1

𝑗=1
𝑆𝑉 (

1

(1+𝑖)
)
(𝑇∗

𝑗

𝑁𝑅𝑒𝑝+1
)

]             (42) 

where, 𝑆𝑉 is the scrap value of the project components. 

4. Objective Function 

The objective function, which is the minimal value of the 
system energy cost and determined by using the formula (34). 
Where all these cost types are a function of some important-
selected variables, which involved in the optimization such as 𝑁𝑊𝑇, 
𝑁𝑃𝑉, 𝑁𝐵𝑎𝑡  and DG rating considering the below system constraints. 
This is clear that the system model is nonlinear depending on 
previous techno-economic mathematical model, which will be 
analyzed by using effective metaheuristic algorithm. The 
following equation expresses the objective function as shown: 

     𝑚𝑖𝑛 𝐶𝑂𝐸(𝑁𝑊𝑇 , 𝑁𝑃𝑉 , 𝑁𝐵𝑎𝑡) = ∑ (𝐿𝐶𝐶)𝑐      

𝑚𝑖𝑛

𝐶=𝑊𝑇,𝑃𝑉,𝐵𝐴𝑇,𝐷𝐺,𝐵𝐷𝐶−𝐶𝐶

(43) 

4.1. Upper and Lower Bounds 

It this study we assumed that the PV array and WTs operate as 
the microgrid's primary energy sources; hence, in the event of an 
energy excess, the battery begins to charge, but if there is a deficit 
energy the battery discharge to meet load (if it is charged). Hence, 
the wind, solar PV energy resources and the battery bank is subject 
to the following constraints: 

                              𝑁𝑊𝑇_𝑚𝑖𝑛  ≤  𝑁𝑊𝑇  ≤ 𝑁𝑊𝑇_𝑚𝑎𝑥                     (44) 

                              𝑁𝑃𝑉_𝑚𝑖𝑛  ≤  𝑁𝑃𝑉  ≤  𝑁𝑃𝑉_𝑚𝑎𝑥                       (45) 

                              𝑁𝐵𝑎𝑡_𝑚𝑖𝑛  ≤  𝑁𝐵𝑎𝑡  ≤  𝑁𝐵𝑎𝑡_𝑚𝑎𝑥                  (46) 

where, 𝑁𝑊𝑇  are the number of WTs, 𝑁𝑃𝑉  are the number of PV 
panels and 𝑁𝐵𝑎𝑡  are the number of battery cells. 

4.2. Battery Bank Storage System Limits 

The following limits [93], determines the amount of energy 
that is stored in the battery bank at any particular time "t":  

                             𝐸𝐵𝑎𝑡_𝑚𝑖𝑛  ≤  𝐸𝐵𝑎𝑡(𝑡)  ≤  𝐸𝐵𝑎𝑡_𝑚𝑎𝑥               (47) 

Where, 𝐸𝐵𝑎𝑡_𝑚𝑎𝑥  and 𝐸𝐵𝑎𝑡_𝑚𝑖𝑛  are the maximum and 

minimum energy storage levels of the battery bank, respectively 
which may be calculated as the following: 

                𝐸𝐵𝑎𝑡_𝑚𝑎𝑥 = (
𝑁𝐵𝑎𝑡 × 𝑉𝐵𝑎𝑡 × 𝐾𝐵𝑎𝑡

1000
) ∗  𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑎𝑥        (48) 

           𝐸𝐵𝑎𝑡_𝑚𝑖𝑛 = (
𝑁𝐵𝑎𝑡 × 𝑉𝐵𝑎𝑡 × 𝐾𝐵𝑎𝑡

1000
) ∗  𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑖𝑛          (49)               

where, 𝑉𝐵𝑎𝑡  and 𝐾𝐵𝑎𝑡  are the battery's voltage and rated capacity 

(Ah), where 𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑖𝑛 and 𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑎𝑥  are the battery's lowest 

and greatest states of charge, which may be calculated as the 

following: 

                                         𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑖𝑛 = 1 − 𝐷𝑂𝐷                        (50) 
 
                              𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑎𝑥 = 𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑖𝑛 − 𝐷𝑂𝐷               (51) 

where, DOD is the depth of discharge of the battery. Figure 11 
shows the normal relationship between lead-acid battery life cycle 
and DOD. 

 
Figure 11: The typical lifecycle of RS lead acid-SSIG batteries versus 
DOD 
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4.3. Diesel Generator Operating Limits 

The DG operates significantly more efficiently at greater loads. 
Therefore, 25% (taken into calculations in these paper) of the DG's 
rated capacity is the maximum load for it to operate. As a result, 
the DG will operate in operational mode after it complies with the 
following restrictions [31]: 

                       
𝑃𝐿𝑜𝑎𝑑(𝑡)

𝜂𝐶𝑜𝑛𝑣
 ≤  25% 𝑜𝑓  𝑃𝐷𝐺_𝑟𝑎𝑡𝑖𝑛𝑔 ∗ ∆t                 (52) 

where, 𝑃𝐿𝑜𝑎𝑑(𝑡) is the demand load at every hour, 𝜂𝐶𝑜𝑛𝑣  is the 
converter's efficiency, 𝑃𝐷𝐺_𝑟𝑎𝑡𝑖𝑛𝑔 is the DG's rated power, and ∆t 
is the simulation's time duration. 

4.4. Loss of Power Supply and Dump Energy Limits 

The 𝐿𝑃𝑆𝑃 and dump energy (𝐸𝐷𝑢𝑚𝑝) are two important indies 

which indicates the system reliability. The optimization approach 
has been developed to trace the 𝐿𝑃𝑆𝑃 and dump load values to 
fulfill the specific limits to achieve the lowest 𝐿𝐸𝐶. In this study, 
the permitted limit for 𝐿𝑃𝑆𝑃  and the permitted limit for dump 
energy is considered to be as follows: 

                                  𝐿𝑃𝑆𝑃 ≤  5% 𝑜𝑓  𝐴𝐷𝐿                             (53) 

                                 𝐸𝐷𝑢𝑚𝑝  ≤  2% 𝑜𝑓  𝐴𝐷𝐿                             (54) 

where, 𝐴𝐷𝐿  is the total annual demand load which can be 
calculated as the following: 

                                𝐴𝐷𝐿 = ∑ 𝑃𝐿𝑜𝑎𝑑(𝑡)

8760

𝑡=1

                            (55) 

5. Energy Management Strategy 

Energy management is thought to be an essential step in the 
IHRES sizing and optimization process. A suggested energy 
management method for the PV/WTs/DG/battery banks IHRES is 
presented in this paper. This algorithm's primary goal to determine 
the ideal IHRES component size in order to satisfy load demand 
while staying within 𝐿𝑃𝑆𝑃 limitations and to dump energy (𝐸𝐷𝑢𝑚𝑝) 

in order to minimize 𝐿𝐸𝐶. The suggested approach is reliant on 
calculating the IHES's energy balance every hour of the year, 
where Figure 13 and Figure 14 show flowcharts of the EMS for 
the operating modes. 

5.1. Methodology 

The design of the IHRES requires a robust energy management 
strategy (EMS). The efficient distribution of power among the 
system's components is the main goal of the EMS. As a result of 
the DG using less fuel, more RE resources are being used. 
Significant cost and energy savings are achieved as a result of the 
EMS's increased system efficiency and reliability. Rule-based 
algorithms with "else," "elseif," "for" loop, and "if" conditions 
have been used to construct the suggested EMS. It simulates the 
input parameters, including load demand, wind speed, ambient 
temperature, solar irradiation, and techno-economic values of the 
components, for 8760 hours, or one year, in the MATLAB© 
environment. The recommended EMS for the IHRES by the LF 
and CC techniques is explained as follows: 

• Load Following Strategy 

The primary benefit of the LF approach is that it may be used 
when energy needs are greater than what batteries and RE sources 
can supply, the DG can meet the shortfall load requirement. The 
main issue is that it doesn't charge the batteries it just meets the 
shortfall load need. The following modes describe how the LF 
strategy functions overall [107]: 

• Cycle Charging Strategy 

The difference between the CC strategy and other strategies is 
that the DG will activate to meet the need for the shortfall load 
while maintaining the battery bank's energy reserves constant 
during the charging process. The following modes provide an 
overview of the CC strategy's general operation [29]: 

Now, the ‘for' loop will begin for 8760 hours of simulation. 

   for t=1:1:8760 

               𝑃𝑛𝑒𝑡(𝑡) = [𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) ∗ 𝜂𝐶𝑜𝑛𝑣] − 𝑃𝐿𝑜𝑎𝑑(𝑡) 

     if  𝑃𝑛𝑒𝑡(𝑡) = 0 

Mode 1: In this mode of operation, the battery 
bank's energy level at time ‘t+1’ is equal to the 
energy level of the preceding hour, and the system's 
total net power delivered is equal to 0. Whereas the 
switches S4, S5, and S5 are in the open position, the 
switches S1, S3, and S2 are closed. This mode of 
operation is illustrated clearly in Figure 12(a). There 
won't be a power outage and the anticipated load 
demand will be satisfied, which may be represented 
mathematically as follows: 

𝑃𝐵𝑎𝑡_𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡) = 0 

                     𝑃𝐵𝑎𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡) = 0 

𝐸Bat(t + 1) = 𝐸Bat(t) 

               𝐿𝑃𝑆(t) = 0 

𝑃𝐷𝑢𝑚𝑝(𝑡) = 0 

 

     elseif  [𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) ∗ 𝜂𝐶𝑜𝑛𝑣] > 𝑃𝐿𝑜𝑎𝑑(𝑡) 

                  𝑃𝐵𝑎𝑡_𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡) = [(𝑃𝑊𝑇(𝑡) − 𝑃𝐿𝑜𝑎𝑑(𝑡)) ∗
                                                                                𝜂𝐶𝑜𝑛𝑣 + 𝑃𝑃𝑉(𝑡)] 
   
            if  𝐸𝐵𝑎𝑡(𝑡) < 𝐸𝐵𝑎𝑡_𝑚𝑎𝑥 − 𝐸𝐵𝑎𝑡(𝑡) 
 

Mode 2: In this mode of operation, the RE 

resources initially satisfy the load demand 

before storing the generated excess energy in 

the battery bank. This is only applicable if the 

energy levels inside the battery bank fall within 

the min-max range, that is, ( 𝐸𝐵𝑎𝑡_𝑚𝑖𝑛  ≤

 𝐸𝐵𝑎𝑡(𝑡)  ≤  𝐸𝐵𝑎𝑡_𝑚𝑎𝑥). While the switches S4 

and S5 are in the open position and the switches 
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S1, S2, and S3 are closed. This mode of 

operation is illustrated visually in Figure 12(b). 

There won't be a power outage and the 

anticipated load demand will be satisfied, 

which may be represented mathematically as 

follows: 

 
𝐸𝐵𝑎𝑡(𝑡 + 1) = (1 −  𝜎) ∗ 𝐸𝐵𝑎𝑡(𝑡)

+ 𝑃𝐵𝑎𝑡_𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡) ∗ 𝜂𝐵𝐶  

 
                       𝐿𝑃𝑆(t) = 0 

                       𝑃𝐷𝑢𝑚𝑝(𝑡) = 0 

 
          else  

Mode 3: In this mode of operation, the 
energy from the RE resources first meets the 
load requirement. If the battery bank's energy 
level reaches its maximum limit (that is, 𝑖𝑓 
(𝐸𝐵𝑎𝑡(𝑡) =  𝐸𝐵𝑎𝑡_𝑚𝑎𝑥), then the dump load is 

operated using the extra energy. In this mode of 
operation, S2 and S4 switches are in the open 
position, while S1, S3, and S5 switches are 
closed, as seen in Figure 12(c). There won't be 
a power outage and the anticipated load 
demand will be satisfied, which may be 
represented mathematically as follows: 

                       𝐸𝐵𝑎𝑡(𝑡 + 1) = 𝐸𝐵𝑎𝑡_𝑚𝑎𝑥  

                             𝐿𝑃𝑆(t) = 0 

                       𝑃𝐷𝑢𝑚𝑝(𝑡) = 𝑃𝐵𝑎𝑡_𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡) − [𝐸𝐵𝑎𝑡_𝑚𝑎𝑥  −
                                                                                                        𝐸𝐵𝑎𝑡(𝑡)] 

         end 

       elseif  [𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) ∗ 𝜂𝐶𝑜𝑛𝑣] < 𝑃𝐿𝑜𝑎𝑑(𝑡)  and 
                                                                   𝐸𝐵𝑎𝑡(𝑡) ≥  𝐸𝐵𝑎𝑡_𝑚𝑎𝑥 

 

Mode 4: In this mode of operation, the battery 
bank will supply the shortfall load need since the 
energy required to operate the RE resources is less 
than what is needed. (𝐸𝐵𝑎𝑡(𝑡) ≥  𝐸𝐵𝑎𝑡_𝑚𝑎𝑥). S1, S2, 

and S3 switches are in the closed position, while S4 
and S5 switches are in the open position, as shown 
in Figure 12(d). during this mode of operation. The 
anticipated load demand will be satisfied, there won't 
be a power outage, and they may be written 
mathematically as follows: 

               𝑃𝐵𝑎𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡) = 𝑃𝐿𝑜𝑎𝑑(𝑡) − [𝑃𝑊𝑇(𝑡) +
                                                                                       𝑃𝑃𝑉(𝑡) ∗ 𝜂𝐶𝑜𝑛𝑣]    

               𝐸Bat(t + 1) = (1 −  𝜎) ∗ 𝐸𝐵𝑎𝑡(𝑡) −
                                                                         (𝑃𝐵𝑎𝑡_𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡)/𝜂𝐵𝐷) 
 
                    𝐿𝑃𝑆(t) = 0 

                      𝑃𝐷𝑢𝑚𝑝(𝑡) = 0 

 

                   if 
𝑃𝐿𝑜𝑎𝑑(𝑡)

𝜂𝐶𝑜𝑛𝑣
 ≤  25% 𝑜𝑓  𝑃𝐷𝐺_𝑟𝑎𝑡𝑖𝑛𝑔 and  

                                                                               𝐸𝐵𝑎𝑡(𝑡) ≤  𝐸𝐵𝑎𝑡_𝑚𝑖𝑛                  

Mode 5: When there is not enough energy 
to match the load demand from the battery bank 
and RE resources. The DG will thereafter be 
operational to meet the shortfall load 
requirement 𝑖𝑓 (𝐸𝐵𝑎𝑡(𝑡) ≤  𝐸𝐵𝑎𝑡_𝑚𝑖𝑛). As soon 

as the RE resources start to generate enough 
electricity to fulfill the demands of the entire 
load, the DG stops. S1, S3, and S4 switches are 
in the closed position during this mode of 
operation, whilst S2 and S5 switches are in the 
open position, as illustrated in Figure 12(e). the 
battery bank still as the previous state. It may 
be mathematically written as follows: The 
anticipated load demand will be satisfied, and 
there won't be a power outage and which are 
mathematically expressed as follows: 

                            𝑃𝐷𝐺_𝐺𝑒𝑛(𝑡) =  𝑃𝐿𝑜𝑎𝑑(𝑡) − [𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) ∗ 𝜂𝐶𝑜𝑛𝑣] 

                      𝐸𝐵𝑎𝑡(𝑡 + 1) = (1 −  𝜎) ∗ 𝐸𝐵𝑎𝑡(𝑡) 

                      𝐿𝑃𝑆(t) = 0 

                      𝑃𝐷𝑢𝑚𝑝(𝑡) = 0 

           else   

Mode 6: In this mode of operation, there 
will be a power outage at time 't' because the 
battery bank's energy level is below the 
recommended minimum level and the energy 
supplied by the RE resources is less than the 
necessary load demand, i.e. 𝐸𝐵𝑎𝑡(𝑡) =
 𝐸𝐵𝑎𝑡_𝑚𝑖𝑛 , but the DG will operate at its 

maximum capacity as illustrated in Figure 
12(f).  This can be expressed mathematically as 
follows: 

 
𝑃𝐷𝐺_𝐺𝑒𝑛(𝑡) =  𝑃𝐷𝐺_𝑚𝑎𝑥 

                  𝐸𝐵𝑎𝑡(𝑡 + 1) = 𝐸𝐵𝑎𝑡_𝑚𝑖𝑛 

                        𝐿𝑃𝑆(t) = 𝑃𝐿𝑜𝑎𝑑(𝑡) − [𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) ∗
                                                                                 𝜂𝐶𝑜𝑛𝑣] − 𝑃𝐷𝐺_𝑚𝑎𝑥 

𝑃𝐷𝑢𝑚𝑝(𝑡) = 0 

           end 

    end 

  end 

The total dump energy which extracted from the system can be 
calculated as the following: 

                                         𝐸𝐷𝑢𝑚𝑝 = ∑ 𝑃𝐷𝑢𝑚𝑝(𝑡)

8760

𝑡=1

                        (56) 
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The LPSP which expressed in deficit energy in the system can 
be calculated as the following: 

                                          𝐿𝑃𝑆𝑇𝑜𝑡𝑎𝑙 = ∑ 𝐿𝑃𝑆(𝑡)

8760

𝑡=1

                       (57) 

The total energy which consumed from the DG can be 
calculated as the following: 

                                       𝐸𝐷𝐺_𝐺𝑒𝑛 = ∑ 𝑃𝐷𝐺_𝐺𝑒𝑛(𝑡)

8760

𝑡=1

                     (58) 

 

Figure 12:  Operating modes of the IHRES using LF and CC 
strategies 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 13: Flowchart of the EMS operating modes and acquisition 

of LPSP using LF and CC strategies. 
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Figure 14: Flowchart of the EMS operating modes and acquisition 

of LPSP using LF and CC strategies. 

5.2. The Proposed Algorithm 

Salp swarm method (SSA) is recognized as a member of the 
metaheuristic family in the literature because of its track record of 
producing the most globally optimum answers to other current 
scientific issues. The salp swarm behavior served as the basis for 
the invention of the SSA by [108].  

The salp is a tiny, translucent creature that resembles a jellyfish 
and has a body structured like a barrel, As Figure 15(a) shows, 
salps also congregate in the deep ocean as a swarm, like a chain, in 
order to look for food, as Figure 15(b) shows. 

Two groups - a leader and followers - have been identified in 
the mathematical modeling of the salp chain population. The salp 
leader leads the other salps to follow behind the chain by standing 
in front of it. Similar to earlier swarm-based optimization 
techniques, the salps' placement is described in an n-dimensional 
search space, where (n) is the number of variables in the suggested 
objective. In this sense, the salps' locations have been maintained 
in a two-dimensional matrix called "Z" and it is assumed that the 
swarm's objective is to reach food source "f" in the search space. 
The update of the position of the leader may be determined as 
follows: 

 𝑍𝑞
1

= {  

𝑓𝑞 + [𝑐1 ∗ (( 𝑢𝑙𝑞 − 𝑙𝑙𝑞) ∗ 𝑐2 + 𝑙𝑙𝑞)],             𝑐3 ≥ 0

           

𝑓𝑞 − [𝑐1 ∗ (( 𝑢𝑙𝑞 − 𝑙𝑙𝑞) ∗ 𝑐2 + 𝑙𝑙𝑞)],             𝑐3 < 0

       (59) 

where, 𝑍𝑞
1 indicates the leader salp's position in the qth dimension. 

The lower and upper bounds of the qth dimension are denoted by 
𝑙𝑙𝑞  and 𝑢𝑙𝑞. 𝑐1, 𝑐2 and 𝑐3 are the random numbers. 

 

Figure 15: (a) Salp and (b) Salp Swarm Chain. 

 
The leader itself is able to adjust its location based on where 

the food supply is. The coefficient 𝑐1, found in next formula, is the 
most important element in ensuring that exploration and 
exploitation in SSA are balanced, as the following: 

                                      𝑐1 =  2𝑒
−(

4𝑢

𝑈
)
2

                                  (60) 

where, 𝑢  and 𝑈  are the maximum and current numbers of 
iterations, correspondingly. 

The interval [0,1] is where the random integers 𝑐2 and 𝑐3 are 
created evenly. These parameters specify the step size and which 
direction the subsequent position in the qth dimension should be in 
relation to positive or negative infinity. The following formula, 
which uses Newton's law of motion, can be used to update the 
followers' location: 

                                   𝑍𝑞
𝑖 =

1

2
𝑎𝑡2 + 𝑉0𝑡                              (61) 

where 𝑉0  is the initial speed, 𝑡  is the time interval, and 𝑖 ≥ 2 

indicates that 𝑍𝑞
𝑖  is the position of the 𝑖𝑡ℎ follower salp in the 𝑞𝑡ℎ 

dimension and 𝑎 is the acceleration rate and equals to 𝑎 =
𝑉𝑓𝑖𝑛𝑎𝑙

𝑡
 

where 𝑉𝑓𝑖𝑛𝑎𝑙 =
𝑍−𝑍0

𝑡
. An iteration is defined as a time ‘𝑡’; the 

difference between two iterations is regarded as 1, and if 𝑉0 = 0, 

𝑍𝑞
𝑖  is defined as follows: 
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                                𝑍𝑞
𝑖 =

1

2
∗ (𝑍𝑞

𝑖 + 𝑍𝑞
𝑖−1)                          (62) 

where, 𝑍𝑞
𝑖   indicates the position of the 𝑖𝑡ℎ follower salp in the 𝑞𝑡ℎ 

dimension when 𝑖 ≥ 2.By using previous formula the salp chains 
are simulated. 

 

Figure 16: Flowchart illustrating the procedure for evaluating 
the optimal IHRES sizing with SSA. 

The SSA has several benefits, including a straightforward idea, 
simple implementation, and great efficiency. It also solves 
optimization issues rapidly by utilizing its fast convergence feature 
to get the global best optimum values. A comprehensive 
explanation of the process with SSA which used to determine the 
ideal IHRES size with the lowest LEC from the most economic 
WTs and satisfy the permitted limits for 𝐿𝑃𝑆𝑃  and 𝐸𝐷𝑢𝑚𝑝 . 

Depending on input data which serve the program is provided in 
the previous Figure 16, which is a flowchart. 

6. Case Study 

The Minia governorate's New Minia city in Egypt has been 
used to evaluate the optimal way to size a small-scale off-grid 
hybrid RE system. According to the data currently available, the 
average yearly wind speed in the chosen location is 5.19 m/s at a 
height of 10 m, and the average daily horizontal solar radiation is 
6.05 kwh/m2/day. Table 2 and Table 3 presents the technical 
parameters of ten WTs from various manufacturers that were 
employed in this study to deliver the required load, PV system 

, battery bank, and DG. In this study, the system lifespan of 25 
years has been selected, and the rate of interest is 3.2%.  

The simulation program MATLAB was used to get the desired 
results. We previously talked about the control parameters and the 
limitations of the optimized variables. The maximum number of 
search agents is around 30, and the maximum number of iterations 
was set at 100. 

 

 

 

Table 2: The technical parameters of the IHRES 
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Table 3: The technical parameters of the IHRES 

 

 

Table 4 lists the economic parameters for every HRES 
component. An overview of the 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑝𝑖𝑡𝑎𝑙 , 𝐶𝑂&𝑀 , 𝐶𝑅𝑒𝑝 ,
𝐶𝐹𝑢𝑒𝑙 , 𝐶𝐸𝑟𝑒𝑐𝑡𝑖𝑜𝑛  𝑎𝑛𝑑 𝑉𝑆𝑐𝑎𝑟𝑝 with useful life of HRES components 

is given in this table.  

Table 4:  The economic values of the IHRES 

 

6.1. Optimal Combination of The System Components 

In order to provide the load requirements for a remote site in 
the New Minia Governorate of Egypt, the size of the proposed 
microgrid, which is determined by the number of (i) WTs, (ii) PV 
modules, (iii) battery banks, and (iv) DG units, has been specified 
in this study using the SSA method based on MATLAB code.  

In addition to matching the load with the available RE sources 
for decreasing needs for DGs and then 𝐶𝑂𝐸 with high reliability 
and performance, so DSM strategy is applied step by step in a 

flowchart to perform the operation of the microgrid as shown in 
Figure 17. 

Firstly, we represent the 𝐶𝑂𝐸 values for each WT in the case 

study with the optimization methods for that particular site. It is 

evident from analysis WT 5 (ITP-1) at SSA yields the lowest 𝐶𝑂𝐸 

value. In the ideal scenario, Figure 18 illustrates how the COE 

changes in relation to the optimization algorithms. The WT system 

and PV solar panels contribute at SSA in the ideal scenario (𝑁𝑊𝑇 

= 78 WTs, 𝑁𝑃𝑉 = 134946 panels), so based on previous analysis of 

optimization; Table 5 shows the detailed results of the optimization 

algorithm SSA compared with other metaheuristic techniques 

which operated on WT5, while the optimization algorithms were 

evaluated considering 100 iterations. Figure 19 shows that after 53 

iterations, SSA was able to reach the optimal solution of 0.21957 

$/kWh within the specified operation limits. Meanwhile, after 72 

iterations, DA reached the best cost of 0.22132 $/kWh, after 75 

iterations, GRO reached the best cost of 0.22009 $/kWh, after 56 

iterations, ALO reached the best cost of 0.22055 $/kWh, after 58 

iterations, PSO reached the best cost of 0.22083 $/kWh, after 64 

iterations, MFO reached the best cost of 0.22134 $/kWh, and after 

58 iterations, WOA reached the best cost of 0.22717 $/kWh.  

 

 

Figure 17: Flowchart illustrating the procedure for applying DSM for the 
load  

 

The results indicate that, in comparison to alternative methods, 
the SSA optimization approach may achieve the objective 
function's minimum best ideal value more quickly and effectively. 
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Based on the simulation results, it can be concluded that the system 
with the lowest 𝑇𝑃𝑉 and 𝐿𝑃𝑆𝑃 within the set constraints will have 
the lowest 𝐶𝑂𝐸  predicted by the SSA. Additionally, SSSA 
projects the optimal 𝐶𝑂𝐸  of 0.21975 $/kWh, which yields a 
4.5433*108 $ total present value and ensures the 𝐿𝑃𝑆𝑃 value of 
0.499, both of which agree with the predetermined value (≤ 0.05). 
Unfortunately, none of the suggested methods were able to get the 
cost function's optimum end value. 

 

Figure 18: The COE related to the optimization algorithms 

 

Figure 19: Convergence curves of the proposed optimization 
techniques 

The SSA algorithm estimates 78 WTs, 134946 PV modules, 
29056 battery banks, and 21 DG units in order to guarantee the 
minimal 𝐶𝑂𝐸  at the suggested location. Furthermore, the 𝐶𝑂𝐸 
that SSA was able to get demonstrates that the suggested hybrid 
microgrid system can provide the remote town with electricity at a 
reasonable cost. For every optimization strategy, the components 
of the objective function are shown in Figure 20 and Figure 21 
such as total present value (TPV) and fuel cost, which provides a 
clear presentation of the comparison.  

SSA has the highest gasoline expense even if it offers the 
lowest 𝐶𝑂𝐸. This can be explained by the fact that SSA specifies 
the lowest possible number of battery storage units (29056 units), 
which results in significant initialization and replacement costs. As 
a result, the 𝐶𝑂𝐸 decreases when the quantity of battery storage 
units is decreased. Conversely, if the storage system's capacity is 
reduced, the DG must run for a longer period of time, increasing 

fuel consumption and the fuel cost annually.Figure 20 shows the 
total present value ($) for all the system during lifetime depending 
on many optimizations techniques fellow. 

Table 5: Comparison between optimization algorithm SSA and 
the others metaheuristic techniques for WT5 

 

 
Figure 20: The total present value ($) for all the system during 

lifetime 

 

Figure 21: The fuel cost ($) 
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6.2. Application of the Optimal Case  

The suggested hybrid system's component hourly power 
variations for the best-case scenario of SSA are depicted in Figure 
22. The results are shown in this figure as follows: load demand 
(𝑃𝑙𝑜𝑎𝑑), power produced by PV solar panels, power produced by 
WTs, and the total power produced by renewable sources (𝑃𝑊𝑇 +
𝑃𝑃𝑉), net power, power of the storage battery system to charge and 
discharge (𝑃𝐵𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  & 𝑃𝐵𝑎𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔), battery bank system 

state of charge as a percentage of storage system capacity (𝑆𝑂𝐶), 
the amount of fuel consumed by the DG units, the number of units 

operating each hour (DG units), the dump load power (𝑃𝐷𝑢𝑚𝑝), and 

the 𝐿𝑃𝑆𝑃. 

Given to  this area's low wind speed, DG units are regularly run 
at varying levels of power to meet the load's energy needs during 
the hours when PV and WT generation is insufficient, and the 
battery system's state of charge is low (𝑆𝑂𝐶). While the dump load 
is operating to absorb surplus power over the load's requirement 
and the storage system's maximum capacity during peak hours of 
output from renewable sources. 
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Figure 22: Simulation results of the optimum solution for 8760 hours (i.e., one year) of operation obtained from SSA 

As shown in Figure 23, the simulation results for a particular 
24-hour period without DSM technique in the optimal case show 
changes in the power of the load (𝑃𝑙𝑜𝑎𝑑), the power from the WT 
and PV systems (𝑃𝑊𝑇 + 𝑃𝑃𝑉), the storage battery system's capacity 
to charge and discharge (𝑃𝐵𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  & 𝑃𝐵𝑎𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ), the 

output power from the DG (𝑃𝐷𝐺), the dump load power (𝑃𝐷𝑢𝑚𝑝), 

and the LPSP. This serves as an example to help understand the 
reasoning behind the suggested optimization algorithm. It is 
obvious that there are two peaks on the daily load curve.  

The first peak occurs at around 1:00pm, when the temperature 
is quite high, and air conditioning is required to lower the 
temperature. The second peak occurs after dusk, at around 6:00pm. 
During the night and early morning, the DG runs continuously 

since RE sources produce less electricity at these periods. The DG 
is turned off when the electricity produced by unconventional 
sources exceeds the demand from the load. Thus, the battery banks 
are charged using the extra power. 

Also as shown in Figure 24, the simulation results for a 
particular 24-hour period with applying DSM technique for 10% 
of load shifting in the optimal case where the 𝐶𝑂𝐸 has decreased 
from 0.2196 to 0.2179 ($/KWh). Where this shifting clip overload 
(regions of deficit energy) and distribute it on regions of surplus 
energy and load curve become flexible to add or clip. So, the 
amount of dummy energy produced by a fully charged battery and 
battery bank storage system reduce the requirement for a backup 
DG. Consequently, overall cost of the system decreased.  
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After applying DSM all changes in the power of the load 
(𝑃𝑙𝑜𝑎𝑑), the power from the WT and PV systems (𝑃𝑊𝑇 + 𝑃𝑃𝑉), the 
storage battery system's capacity to charge and discharge 
(𝑃𝐵𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  & 𝑃𝐵𝑎𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔), the output power from the DG 

(𝑃𝐷𝐺), the dump load power (𝑃𝐷𝑢𝑚𝑝), and the LPSP will be shown. 

 

Figure 23: Simulation results for just one day of operation (24 hours) of the optimum solution derived from 

SSA without using DSM 
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Figure 24: Simulation results of the optimum possible solution, derived from SSA, using a 10% load-shifting DSM method over a full day 

of operation (24 hours) 
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In addition, as shown in Figure 25, the simulation results for a particular 24-hour period with DSM technique for 80% of load shifting 

in the optimal case where the 𝐶𝑂𝐸 has decreased from 0.2196 to 0.2013 ($/KWh). 

 

 
Figure 25: Simulation results of the optimum possible solution, derived from SSA, using a 80% load-shifting DSM method over a full day 

of operation (24 hours) 
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The previous figures show changes in the power of the load 
(𝑃𝑙𝑜𝑎𝑑), the power from the WT and PV systems (𝑃𝑊𝑇 + 𝑃𝑃𝑉), the 
storage battery system's capacity to charge and discharge 
(𝑃𝐵𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  & 𝑃𝐵𝑎𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ), the power output of the DG 

(𝑃𝐷𝐺), the dump load power (𝑃𝐷𝑢𝑚𝑝), and the LPSP. 

By using the DSM strategy with its efficient techniques, the 
total system cost is reduced as shown in Figure 26, because this 
strategy tries to match the demand load with available RE sources, 
so only a small number of backup DGs are needed to cover up for 
the lost power hours, and then small number of battery bank which 
store surplus power, consequently reducing the LPSP and dump 
energy. 

 

Figure 26: The COE ($/KWh) with load shifting percentage (%) 

7. Conclusion 

In this paper, a new, high-performed program has been 
developed with participation of multi-metaheuristic algorithms in 
addition to an effective strategy such as LF, CC and DSM 
techniques for the sizing and optimization of isolated integrated 
hybrid WT/PV/DG/battery bank energy systems to feed loads in 
remote area of New Minia city  located in Egypt considering 
uncertainty analysis of natural sources (sun and wind) and 
economic changes based on site-specific weather data and real-
time information. To increase the system's reliability and 
efficiency, the IHRES's units are connected via hybrid DC and AC 
buses. Once the batteries were completely charged, a dummy load 
was employed to absorb the surplus power in the system. 

Seven metaheuristic optimization approaches, including WOA, 
MFO, PSO, ALO, DA, GRO, and SSA, were used to identify the 
optimal configuration for a standalone hybrid RE system. After a 
thorough comparative analysis, it is shown that SSA had the best 
speed of convergence and the highest operating efficiency to get 
the global best optimum values. This case study can actually help 
the decision makers in Egypt's New Minia city consider the usage 
of hybrid systems as a practical electrification option that can help 
them to reduce dependency on traditional fossil fuels resources. 

This flexible program has the availability to estimate the 
optimal size of the proposed IHRES and achieved the main 
objective function of this program, which is determining optimum 
size of the design parameter 𝑁𝑊𝑇 ,  𝑁𝑃𝑉 ,  capacity of DG and 
battery bank to meet demand while generating electricity at the 

lowest possible cost 𝐶𝑂𝐸 , minimum 𝐿𝑃𝑆𝑃  which about 5%, 
minimum amount of greenhouse gases and minimum amount of 
dummy which scored 4% of total demand load energy at highest 
reliability and performance. The following is an overview of these 
results: 

• Introducing high-performance metaheuristic algorithms that 
surpass both conventional deterministic approaches and all 
commercial software in solving hybrid RE system design 
problems. 

• Presenting a successful optimization technique SSA with 
comparatively minimal computing needs. SSA can achieve 
the global optimum, which in this case is represented by the 
lowest cost. Furthermore, it is observed that using SSA results 
in less iterations needed to get the ideal solution than other 
methods. In addition, the outcomes proved that the SSA 
method could be used quickly and with great performance. 

• Investigation of the multi-objective function suggested in this 
paper, which identifies the ideal size for every part of a 
standalone hybrid PV, WT, DG, and battery energy system by 
evaluating the amount of dummy energy at maximum 
performance and reliability, the lowest possible COE 
produced and the loss of a power supply probability (LPSP). 
The functioning of the system was significantly improved as 
a consequence. 

• Using efficient strategies like DSM which decreased the 𝐶𝑂𝐸 
from 0.21957 to 0.2159 ($/KWh) with applying load shifting 
of 20%, LF, CC, and energy conservation with various 
techniques like load shifting, peak clipping, energy 
conservation, valley filling, flexible load shape, and load 
building. These strategies have a major impact on meeting 
load demand and lowering the size of system components, 
which directly decreased the LCC. 

• Representing the uncertainty analysis which describes the 
intermittent nature of solar and wind and its effect on 
generated power from WTs and PV solar panels. 

7.1.  Recommendations for Further Work 

There are several possible paths for the research work that this 
paper describes. The following highlights the most promising 
expansions of the work that this paper presents: 

• The capacity of unit DG the largest it be can, the efficient 
system is developed and then the minimum total cost, because 
increasing the DG capacity directly decreasing the total 
number of required DG units which decreasing the regular 
maintenance, initial capital cost and increasing performance 
of the system. 

• The battery bank replacement will be necessary several times 
during the system's lifetime due to its limited lifespan in 
comparison to the other IHRES components. Furthermore, it 
represents an important portion of the project's overall costs. 
Finding a longer-term and more affordable energy storage 
solution than battery storage is therefore important. 

• Selecting the most economical system design after taking into 
account a number of the IHRES independent power 
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generation configurations, such as solar PV panels, WT, DG, 
FC, hydrogen tanks, and storage batteries. 
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Abbreviation and Symbols 

DSM Demand Side Management. 

LF Load Following. 

CC Cycle Charging. 

COE Cost of Generated Energy. 

LPSP Loss of Power Supply Probability. 

SSA Salp Swarm Algorithm. 

RE Renewable Energy. 

GHGs Greenhouse Gases. 

CO2 Carbon Dioxide. 

HPT Heat Pumping Technologies 

GH Green Hydrogen. 

HP Hydropower. 

PV Photovoltaic 

SHC Solar Heating and Cooling. 

IEA International Energy Agency. 

IHRES Integrated Hybrid Renewable Energy System. 

FC Fuel Cell. 

FW Flywheel. 

HPSS Hydroelectric Pumped Storage System. 

DG Diesel Generator. 

WT Wind Turbine. 

RES Renewable Energy Sources. 

GHI Global Horizontal Irradiation for Cite. 

HRES Hybrid Renewable Energy System. 

iHOGA Improved Hybrid Optimization by Genetic Algor. 

NREL National Renewable Energy Laboratory. 

RERL Renewable Energy Research Laboratory. 

HOMER Hybrid Optimization Model for Electrical 

Renewable Sources. 

TRNSYS Transient Energy System Simulation Program. 

HVAC Heating, Ventilation and Air Conditioning. 

ISE Institute of Solar Energy. 

MOSADE Multi-Objective Self-Adaptive Differential 

Evolution Algorithm. 

MBA Mine Blast Algorithm. 

PICEA Preference Inspired Coevolutionary Algorithm. 

ANN Artificial Neural Network. 

DHS Discrete Harmony Search. 

GA Optimizer of Genetic Algorithm. 

PSO Optimizer of Particle Swarm Optimization. 

SAA Optimizer of Simulated Annealing Algorithm. 

RSM Response Surface Methodology. 

MOPSO Optimizer of Multi-Objective Particle Swarm 

Optimization. 

COE Cost of Energy. 

SMCS Sequential Monte Carlo Simulation. 

CS Cuckoo Search. 

KSA The Kingdom of Saudi Arabia. 

ABC Artificial Bee Colony. 

IAOA Improved Arithmetic Optimization Algorithm. 

WOA Optimizer of Whale Optimization Algorithm 

WCA Optimizer of Water Cycle Algorithm 

MFO Optimizer of Moth Flame Optimizer. 

GRO Gray Wolf Optimizer. 

DA Dragonfly Algorithm. 

ALO Ant Lion Optimizer. 

NASA National Aeronautics and Space Administration. 

H Height of the Hub. 

𝒉𝒂 Height of the Anemometer. 

u(h) The Wind Speed at The Height of The Hub. 

u(𝒉𝒂) The Wind Speed at The Height of The 

Anemometer. 

𝜶 Roughness Factor. 

𝑷𝑳𝒐𝒂𝒅 The Hourly Demand Load. 

𝑷𝒎𝒆𝒄𝒉 The Wind Turbine's Mechanical Output Power. 

𝝆 The Air Density. 

𝑨 The Rotor Blade Swept Area (m2). 

𝑪𝒑 The Power Coefficient for Wind Turbine. 

𝑹 The Turbine Radius (meters). 

𝝎 The Turbine's Angular Velocity (Rad/Sec). 

𝝀 The Wind Speed Ratio. 

𝒄𝒖𝒕 − 𝒊𝒏 The Cut-In Wind Speed. 

𝒄𝒖𝒕 − 𝒓𝒂𝒕𝒆𝒅 The Rated Wind Speed. 

𝒄𝒖𝒕 − 𝒐𝒇𝒇 The Cut-Off Wind Speed. 

K The Shape Parameter. 

C The Scale Parameter. 

𝑭(𝒖) The Cumulative Distribution Function. 

𝑷𝐖𝐓 The Power Generated from WT. 

𝑬𝐖𝐓 The Energy Generated from WT. 

𝑵𝐖𝐓 The Number of WTs. 

∆𝒕 Time Interval. 

𝑷𝐏𝐕 The Power Generated From PV 

𝑬𝐏𝐕 The Energy Generated From PV 

𝑵𝐏𝐕 The Number of PV Panels. 

∆𝒕 The Time Interval. 

𝑷𝑳𝒐𝒂𝒅 The Demand Load Power. 

𝑷𝐆𝐞𝐧 The Total Electrical Power Generated. 

𝝈 The Hourly Self-Discharge Rate. 

𝑷𝑩𝑪 The Battery Charging Power. 

𝑷𝑩𝑫 The Battery Discharging Power. 

𝑬𝑩𝒂𝒕 The Energy That Is Stored in The Battery Bank 
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𝑵𝐁𝐚𝐭 Number of Battery Cells. 

𝜼𝑪𝒐𝒏𝒗 The Bi-Directional Converter Efficiency. 

𝜼𝑩𝑪 The Battery Charging Efficiency. 

𝜼𝑩𝑫 The Battery Discharging Efficiency. 

𝑬𝑩𝒂𝒕_𝒎𝒂𝒙 The Maximum Allowable of Battery Storage 

Capacity. 

𝑬𝑩𝒂𝒕_𝒎𝒊𝒏 The Minimum Allowable of Battery Storage 

Capacity. 

DOD Depth of Discharge of The Storage Battery. 

𝑪𝑩𝒂𝒕 The Battery Storage Nominal Capacity. 

𝑭𝑫𝑮 The DG Hourly Fuel Consumption. 

𝒂𝑫𝑮 𝒂𝒏𝒅 𝒃𝑫𝑮 The Operating Coefficients. 

𝑷𝑫𝑮_𝑮𝒆𝒏 The Hourly Produced Power 

𝑷𝑫𝑮_𝒓𝒂𝒕𝒊𝒏𝒈 The Rated Power of the DG 

𝑭𝑫𝑮 The Fuel Consumption Per Hour of the DG. 

AFC The DG Annual Fuel Consumption. 

𝑪𝑶𝟐(𝒕) The Hourly Emissions Per Liter. 

BDC-CC Bidirectional Converter with A Charge Controller 

EMS Energy Management Strategy. 

LCC Life Cycle Cost. 

TPC The Total Present Cost of The Overall Project. 

LAE The Annual Required Load. 

CRF The Capital Recovery Factor. 

T The Project Lifetime in Years. 

y The Discount Rate 

𝒊𝒏𝒐𝒎 The Real Net Interest Rate. 

f The Annual Inflation Rate. 

𝑪𝑰𝒏𝒊𝒕𝒊𝒂𝒍_𝑪𝒂𝒑𝒊𝒕𝒂𝒍 The Initial Capital Cost. 

𝐂𝐏𝐕 Cost of PV System Including Civil Works Per Kw. 

𝐂𝐖𝐓 Cost of WT Including Civil Works Per Kw. 

𝑪𝑩𝒂𝒕 The Cost of Battery Storage Per Kwh. 

𝐏𝐁𝐃𝐂−𝐂𝐂 The Rated Power of The Converter. 

𝑪𝐁𝐃𝐂−𝐂𝐂 The Cost of Converter Per Kw. 

𝑪𝑫𝑮 The Cost of DG Per Kw. 

𝑪𝑶&𝑴 The Operation and Maintenance Cost. 

𝑪𝑹𝒆𝒑 The Replacement Cost. 

𝑪𝑭𝒖𝒆𝒍 The Fuel Cost of DG. 

𝑷𝑭𝒖𝒆𝒍 The Price of Fuel Per Liter. 

𝑽𝑺𝒄𝒂𝒓𝒑 The Scrap Present Value. 

𝑬𝑫𝒖𝒎𝒑 The Energy of Dump Load. 

𝑷𝑫𝒖𝒎𝒑 The Power of Dump Load. 

𝑡 Time. 
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