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 This article presents a comprehensive study on the control system of a single-joint robotic arm by 

comparing the performance of an optimal Sliding Surface PID (SSPID) controller, tuned via Particle 

Swarm Optimization (PSO), with both optimal PID Controller and Fractional Order PID (FOPID) 

controller. The proposed SSPID controller integrates sliding mode control principles, where the 

equivalent control is derived from the system dynamics to stabilize the system on the sliding 

surface, while the switching control component utilizes a PID structure to ensure robustness against 

uncertainties and external disturbances. Simulation and experimental results indicate that the SSPID 

controller significantly outperforms both PID and FOPID controllers regarding rise time and 

tracking accuracy. The simulation results also showed that the sliding surface PID controller 

enhances robustness, especially under variations in system physical parameters of 20% and 50%. 

The SSPID exhibits faster response times, reduced overshoot, and stable performance. 
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1. Introduction 

Robotic arms have become an essential component in modern 

industries. They help in manufacturing, healthcare, and logistics, 

due to their precision, flexibility, and ability to perform repetitive 

tasks [1-3]. The control of a robotic  

arm is a complex task that requires precise positioning and 

trajectory tracking. Among the various control techniques, 

Proportional-Integral-Derivative (PID) control and Sliding Mode 

Control (SMC) are widely used due to their simplicity, robustness, 

and effectiveness.[4-7] 

PID control is a popular choice for robotic arm control 

because of its simplicity and tuning. However, PID control may 

not provide satisfactory performance in the presence of 

uncertainties, disturbances, and nonlinearities [8-10]. On the 

other hand, SMC is effective in handling these challenges due to 

its ability to reject disturbances and provide robust control, 

However, SMC often suffers from chattering, leading to wear and 

tear on the system [11-13]. 

Researchers have developed various SMC techniques to 

enhance the performance and robustness of robotic manipulators. 

For instance, a fuzzy sliding mode controller was proposed for a 

flexible single-link robotic manipulator, demonstrating its 

effectiveness in suppressing vibrations [14]. An integral sliding 

mode control approach was also presented for the position control 

of a robotic manipulator, showcasing its ability to reduce tracking 

errors [15]. Comparative studies have also been conducted, such 

as a study that evaluated the performance of PID, fuzzy logic 

control, and SMC for a 2-DOF robotic manipulator [16]. 

Furthermore, researchers have focused on enhancing the 

robustness of SMC, with the development of a robust sliding 

mode control strategy for robots driven by compliant actuators 

[17]. Additionally, adaptive incremental SMC approaches have 

been proposed, such as one that demonstrated improved tracking 

performance for a robot manipulator [18]. These studies highlight 

the potential of SMC-based controllers in achieving high-

performance control of robotic manipulators. 

Despite these advances, there remains a need for further 

research on the optimal design and tuning of SMC for robotic 

arm control. In particular, there is a need to develop SMC 

schemes that can provide fast and robust responses without 

chattering and overshoot. This paper aims to address this research 

gap by proposing an alternative SMC scheme that combines the 

benefits of PID and SMC. 

The main contribution of this paper is the development of an 

optimal Sliding Surface PID (SSPID) controller with an 

equivalent controller derived from the system dynamics and a 

switching controller PID controller to reduce chattering. The 

proposed controller is optimized using Particle Swarm 

Optimization (PSO) to ensure optimal performance. PSO was 

chosen for its efficiency, faster convergence, and simpler 

implementation compared to other heuristic methods. The 
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proposed controller is benchmarked against optimal PID and 

optimal Fractional Order PID (FOPID).  

This paper is organized into 6 sections as follows: section 1 

introduces the fundamental concepts of controlling robotics by 

PID and SMC controllers, Section 2 presents the system outline 

and mathematical modeling, Section 3 discusses the optimization 

and parameter tuning, Section 4 presents the simulation and 

results and it is subdivided into 3 subsections, 4.1 compares 

between the performance of optimal SSPID against optimal PID, 

4.2 compares between the performance of optimal SSPID against 

optimal FOPID, 4.3 compares between the robustness of SSPID 

and traditional PID controllers, Section 5 discuss the 

experimental setup and results, and Section 6 concludes the paper. 

2. System Dynamics and Outline 

The mathematical modeling of the robotic arm is critical to 

describe its behavior and determine the relationship between joint 

position and velocity to torque/force or current/voltage. A single-

joint robotic arm connected to a fixed field-DC motor is 

considered, the electrical model of the DC motor is shown in 

Figure 1. The robotic arm parameters used in this study were 

adopted from [19] and listed in Table 1. This provides a detailed 

description of the parameters relevant to the single-joint robotic 

arm connected to a fixed-field DC motor, including armature 

resistance, inductance, inertia, damping, torque constant, and 

back EMF constant. 

 
Figure 1: Fixed-field DC motor circuit diagram 

Table 1: Single-joint robotic arm parameters. 

Parameter Value Explanation 

Ra 1 Ω Armature Resistance 

La 0.23 H Armature Inductivity 

Jeqv 0.0333 kg.m2 Equivalent Inertia 

beqv 0.012 N.m.s/rad Equivalent Damping 

Kt 0.023 N.m/A Torque Constant 

Kb 0.023 V.S/rad Back EMF Constant 

The back-EMF is induced by the armature winding of the DC 

motor by rotation in the magnetic field, and the generated EMF is 

proportional to the motor speed [20]: 

𝑉(𝑡) =  𝐿𝑎
𝑑𝑖(𝑡)

𝑑𝑡
 +  𝑅𝑎𝑖(𝑡) +  𝐾𝑏  𝜃̇(𝑡)               (1) 

where, V(t) is the applied voltage, measured in volts (v), La is the 

armature inductance, measured in Henry (H), Ra is the armature 

resistance, measured in Ohms (Ω), 𝑖(𝑡)  is the motor current, 

measured in amperes (A), Kb is the back EMF constant, 

measured in volts per second per rad (v.s/rad), and 𝜃̇(𝑡) is the 

angular velocity of the robotic arm, measured in radians (rad). 

The mechanical equation of the robotic arm is: 

𝐽𝑒𝑞𝑣 𝜃̈(𝑡) + 𝑏𝑒𝑞𝑣  𝜃̇(𝑡) =  𝐾𝑡  𝑖(𝑡)       (2) 

where, 𝐽𝑒𝑞𝑣 is the equivalent inertia, measured in kilogram-metres 

squared (kg.m2), 𝑏𝑒𝑞𝑣  is the equivalent damping, measured in 

newton-meters per radians per second (N.m.s/rad), 𝐾𝑡  is the 

torque constant, measured in newton-meters per ampere (Nm/A), 

and 𝑖(𝑡) is the motor current. 

Substituting the robotic arm model parameters from Table 1, the 

mechanical equation becomes: 

0.0333 𝜃̈(𝑡)  +  0.12 𝜃̇(𝑡)  =  0.023 𝑖(𝑡)        (3) 

and the electrical equation becomes:  

𝑉(𝑡)  =  0.23 
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑖(𝑡) + 0.023 𝜃̇(𝑡)    (4) 

Taking Laplace transformation and solving equations (3) and (4), 

we got the transfer function as: 

𝐺 =  
0.023

0.0077659𝑠3+ 0.609𝑠2+0.1205𝑠
               (5) 

To derive the control law, first the system is expressed in state-

space form. Define the state variables as: 

𝑥1  =  𝜃(𝑡)      (6) 

𝑥2 = 𝜃̇(𝑡)      (7) 

𝑥3 =  𝑖(𝑡)      (8) 

where, 𝜃(𝑡) is angular position, 𝜃̇(𝑡) is the angular velocity, 𝑖(𝑡) 

is the motor current  

The state-space equations become: 

𝑥̇1 =  𝑥2       (9) 

𝑥̇2 =  
𝐾𝑡 𝑥3 −𝑏𝑒𝑞𝑣 𝑥2

𝐽𝑒𝑞𝑣
  =  

0.023 𝑥3 − 0.12 𝑥2

0.0333
                (10) 

𝑥̇3 =  
𝑉(𝑡)−𝑅𝑎𝑥3−𝐾𝑏𝑥2

𝐿𝑎
 =

𝑉(𝑡)−𝑥3−0.023 𝑥2

0.23
                (11) 

This system describes the third-order dynamics of the robotic 

arm and motor. 

For Higher Order Sliding Mode Control (HOSMC), the sliding 

surface is given by: 

𝑠(𝑡)  =  𝑒̈(𝑡)  +  2𝜆 𝑒̇(𝑡)  + 𝜆2 𝑒(𝑡)              (12) 

where, 𝑒(𝑡)  =  𝑥1  −  𝜃𝑑, is the position error, 𝑒̇(𝑡)  =  𝑥2  −  𝜃̇𝑑  

is the velocity error, 𝑒̈(𝑡)  =  𝑥̇2  −  𝜃̈𝑑, is the acceleration error 
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To keep the system on the sliding surface, we set 𝑠(𝑡) = 0. This 

ensures that the system remains on the sliding surface at all 

times. 

From the system dynamics, we know: 

 

𝑥̈1 = 𝑥̇2 =  
0.023 𝑥3 − 0.12 𝑥2

0.0333
               (13) 

Substituting this into the sliding surface Equation (12): 

𝑠(𝑡) =
0.023 𝑥3−0.12 𝑥2

0.0333
2𝜆𝑥2 + 𝜆2(𝑥1 − 𝜃𝑑)               (14) 

Setting 𝑠(𝑡) = 0 gives us: 

0.023 𝑥3−0.12 𝑥2

0.0333
2𝜆𝑥2 + 𝜆2(𝑥1 − 𝜃𝑑)  = 0               

(15) 

Solving for 𝑥3: 

0.023𝑥3 = 0.0333[−2𝜆𝑥2  −  𝜆2(𝑥1 −  𝜃𝑑)] + 0.12𝑥2           (16) 

𝑥3 =
−  0.0666𝜆𝑥2 − 0.0333𝜆2(𝑥1 − 𝜃𝑑)+0.12𝑥2

0.023
              (17) 

𝑥3 = (5.65 − 2.9𝜆)𝑥2 − 1.45𝜆2(𝑥1 − 𝜃𝑑)              (18) 

From Equation (8), Setting 𝑥̇3 = 0 ,to derive the equivalent 

control that keeps the system on the sliding surface and denoting 

V(t) as ueq(t) as it represents the equivalent control signal, and 

solving for ueq(t): 

0 =
𝑢𝑒𝑞(𝑡)−𝑥3−0.023 𝑥2

0.23
                (19) 

𝑢𝑒𝑞(𝑡)  =   𝑥3  + 0.023 𝑥2               (20) 

Substituting the expression for 𝑥3 from equation (15): 

𝑢𝑒𝑞(𝑡) = (5.65 − 2.9𝜆)𝑥2 − 1.45𝜆2(𝑥1 − 𝜃𝑑)  + 0.023 𝑥2   (21) 

Simplifying,  

𝑢𝑒𝑞(𝑡) = (5.673 −  2.9𝜆)𝑥2  −  1.45𝜆2(𝑥1  −  𝜃𝑑)             (22) 

 

For the switching control we use a PID controller to 

guarantee the robustness of the system: 

𝑢𝑆𝑊(𝑡)  =   𝑘𝑝𝑠(𝑡) + 𝑘𝑖 ∫ 𝑠(𝑡) + 𝑘𝑑
𝑑

𝑑𝑡
 𝑠(𝑡)                       (23) 

where, 𝑘𝑝 is the proportional gain, 𝑘𝑖  is the integral gain, 𝑘𝑑  is 

the derivative gain, Figure 2. shows the block diagram of PID 

controller. 

 
Figure 3: Block diagram of the PID controller 

The final control law u(t) for position control of the single 

joint robotic arm will be a combination of the equivalent control 

and switching control as follows: 

𝑢(𝑡)  =   𝑢𝑒𝑞(𝑡)  + 𝑢𝑆𝑊(𝑡)                (24) 

Figure. 3 illustrates the block diagram of control system of 

single-joint robotic arm based on SSPID controller represented 

by equation (24). 

 
Figure 3: Block diagram of the sliding surface PID controller 

3. Optimization of Controller Parameters 

In this research, the Particle Swarm Optimization (PSO) 

algorithm is utilized to optimize the parameters of the SSPID, 

PID, and FOPID controllers. PSO is a population-based random 

optimization technique, it depends on the collective behavior of 

particles in a swarm to search for the optimal solution. PSO is 

effective in identifying optimal controller parameters, which is 

crucial for achieving precise system control. Figure 4 shows The 

PSO optimization process. It depicts the iterative process of 

particles updating their positions based on their personal best 

positions and the global best position [21-23]. 

PSO is selected for tuning the controllers’ parameters due to 

its efficiency and robustness, particularly in complex control 

systems like robotic arms. PSO offers several advantages over 

traditional optimization techniques such as Genetic Algorithms 

(GA). Unlike GA, which involves computationally intensive 

operations like crossover and mutation, PSO employs a simpler 

mechanism based on the movement of particles in a search space, 

allowing for faster convergence to optimal solutions. 

Additionally, PSO requires fewer parameters to tune, which 

simplifies the optimization process and enhances its global 

search capabilities, thereby reducing the risk of premature 

convergence. This makes PSO particularly effective for 

minimizing performance metrics like the Integral of Time-

weighted Absolute Error (ITAE), as it balances exploration and 

exploitation effectively. The iterative nature of PSO ensures 

precise optimization of SSPID parameters, leading to superior 

system performance characterized by improved rise time, 

minimized overshoot, and enhanced robustness, as evidenced by 

our simulation and experimental results. 

The performance of PSO algorithm is impacted by several 

parameters. These parameters are carefully selected to ensure 

efficient convergence to the optimal solution. The parameters 

used in this research are listed in Table 2. These parameters 

include the swarm size or population size, number of iterations, 
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inertia weight, inertia damping ratio, personal learning 

coefficient, and global learning coefficient. The tuning process 

consists of adjusting these parameters to strike a balance 

between exploration and exploitation, ensuring that the 

algorithm approaches to the optimal solution. By carefully 

selecting these parameters, the PSO algorithm can identify the 

optimal controller parameters that minimize the fitness function. 

Table 2: PSO parameters 

Parameter Value Explanation 

nsize 50 Swarm size 

I 100 Iteration number 

w 1 Inertia weight 

wdamp 0.99 Inertia weight damping ratio 

c1 1 Personal Learning Coefficient 

c2 1 Global Learning Coefficient 

 
Figure 4: Flow chart of Particle Swarm Optimization 

To evaluate the performance of the proposed controller, this 

research utilizes the Integral of Time-weighted Absolute Error 

(ITAE) fitness function shown in equation (25). The ITAE 

criterion is a widely used performance measure for control 

system design. ITAE minimizes the absolute error multiplied by 

time, reducing both the magnitude and duration of errors. By 

utilizing the ITAE fitness function the controller parameters can 

be optimized. this achieves improved performance and 

robustness, improves tuning control parameters, and enhances 

system performance and stability. The ITAE fitness function 

provides a balanced trade-off between achieving a fast response 

and minimizing overshoot, making it an effective metric for 

evaluating controller performance [24-25]. 

𝐼𝑇𝐴𝐸 = ∫ 𝑡. |𝑒(𝑡)|𝑑𝑡
∞

0
                (25) 

4. Simulation and Results 

In this section, a comprehensive simulation study was 

performed for evaluating the performance of the proposed 

control strategy for a single-joint robotic arm system. The 

simulation was performed using MATLAB/Simulink version 

2020a. The mathematical model of the system described by the 

transfer function in equation (5) served as the base for the 

simulation. The main objective of this simulation is to 

benchmark the performance of the optimal sliding surface PID 

(SSPID) controller against two other optimally tuned controllers: 

the PID and FOPID controllers. To achieve this, the output 

responses of each control system are systematically compared 

and analysed to evaluate their efficacy in controlling the robotic 

arm system. The simulation methodology employed in this study 

is illustrated in Figure 5, which outlines the step-by-step 

approach used to evaluate the performance of the proposed 

control strategies. 

Figure 5. The scenarios for the simulation results 

4.1. Performance Comparison of Optimal SSPID and Optimal 

PID Controllers for a Robotic Arm 

 In this section, the system performance of a single-joint 

robotic arm model controlled by an optimal SSPID controller is 

evaluated in comparison to an optimal PID controller. 

Significant improvements are observed in terms of faster 

response time and the elimination of overshoot when utilizing 

the SSPID controller. The optimal control parameters for the 

SSPID controller and their upper and lower bounds that are used 

in optimization are presented in Table 3.  

 

Evaluating the system performance of  sliding surface PID in comparison 
with a PID controller for a robotic arm model

Evaluating the system performance of  sliding surface PID in comparison 
with a FOPID controller for a robotic arm model

Test the robustness of Sliding Surface PID in comparison  with the 
robustness of PID
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Table 3: Optimal SSPID parameters 

Parameter Upper bound Value Lower bound 

λ 0.01 15 20 

kp 0 29.8 50 

ki 0 3.72 5 

kd 0 2.14 5 

where λ is the sliding surface coefficient, kp is the proportional 

gain, ki is the integral gain, and kd is the derivative gain of the 

PID controller. 

The Optimal PID controller parameters are presented in 

Table 4. 

Table 4: Optimal PID controller parameters 

Parameter Upper bound Value Lower bound 

kp 0 12.5 50 

ki 0 0.01 5 

kd 0 4.5 5 

To evaluate the performance of the proposed control 

technique, the angular position output is measured under three 

distinct input scenarios. The system was subjected to step, 

square wave, and sine wave input reference signals. The 

simulation results offer an accurate analysis of the system’s 

response to these varying input conditions. Additionally, the 

following figures highlight the advantages of the SSPID 

controller compared to the optimal PID controller in these 

scenarios.  

Figure 6 compares the angular position response of a robotic arm 

using an optimal SSPID controller and a traditional PID 

controller with a step wave input as the reference signal. The 

results show that the optimal SSPID controller exhibits a faster 

rise time and minimal delay in reaching the desired angular 

position. It outperforms the conventional PID controller, which 

has a slower response. 

Figure 6.: The system response for step input considers optimal PID 

and optimal SSPID techniques 

The SSPID controller demonstrates superior transient 

behavior, as there is no observable overshoot, whereas the 

conventional PID controller experiences a small amount of 

overshoot before settling. Both controllers ultimately reach a 

steady state, but the SSPID controller achieves a quicker 

convergence to the reference signal, indicating better overall 

system stability and responsiveness. 

Furthermore, Figures 7 and 8 compare the performance of the 

optimal PID and optimal SSPID controllers when tracking 

square wave and sine wave reference signals, respectively. In 

both cases, the optimal SSPID controller demonstrates superior 

tracking accuracy. For the square wave input in Figure 7, the 

optimal SSPID controller outperforms the Optimal PID 

controller with faster rise times and more accurate responses at 

the sharp transitions of the square wave. The PID controller lags, 

with overshoot and slower tracking of the sudden changes.  

Similarly, for the sine wave input in Figure 8, the SSPID 

controller shows reduced phase lag compared to the PID 

controller, resulting in better synchronization with the reference 

signal. The PID controller, however, exhibits a noticeable delay, 

leading to a phase shift that hinders its tracking precision. 

Figure 7: The system response for square wave input considering 

optimal PID and optimal SSPID techniques 

Figure 8: The system response for sine wave input considering 

optimal PID and optimal SSPID technique. 

Overall, the optimal SSPID controller is more effective in 

maintaining accurate and fast responses for both periodic sine 

wave and discontinuous square wave reference signals. 

Figure 9 gives some interesting information about how the 

control signal of the optimal PID controller and optimal Sliding 

Surface PID controller performs. The two signals are almost 

equal in peak because of the inclusion of the saturation module 

that saturates the control signal of the SSPID, but it was found 

very important to remember that SSPID has a higher response 
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rate and robustness. The saturation module ensures that the 

control actions remain within a specified range, preventing 

excessive control efforts that could lead to instability or actuator 

saturation. 

 
Figure 9: Comparison of the control signal of Optimal PID 

controller against Optimal SSPID Controller 

The system specifications (rise time, settling time, peak, and 

peak time) for both the optimal SSPID and optimal PID are 

presented in Table 5. 

Table 5: Specifications of the considered systems based on 

Optimal SSPID and Optimal PID controller 

Parameter Optimal SSPID Optimal PID 

Rise Time (sec) 0.10539  0.59677  

Settling Time (sec) 1.1979  1.9125  

Peak (degrees) 50  50.8  

Peak Time (sec) 1.353  2.2083  

In terms of the previous results and system specification 

comparison, the optimal SSPID controller outperforms the 

optimal PID controller in terms of rise time, tracking accuracy, 

and overshoot minimization. The difference is most pronounced 

in the step and square wave responses, where the SSPID 

controller shows significant advantages in fast and precise 

response, while the sine wave case reveals the SSPID’s ability to 

reduce phase lag, thus enhancing its performance across a range 

of input types. 

4.2. Performance Comparison of Optimal SSPID and Optimal 

FOPID Controllers for a Robotic Arm 

Fractional Order PID (FOPID) is an enhanced version of the 

conventional PID controller that utilizes fractional calculus to 

generalize the orders of the integral and derivative components. 

Unlike traditional PID controllers, where the orders of both the 

integral and derivative terms are fixed as integers (usually 1), the 

FOPID allows these orders to be any real number. This added 

flexibility enables finer tuning and can lead to improved 

performance, especially in managing complex systems such as 

robotic arms [26-27]. In this simulation, the optimal SSPID 

controller for the robotic arm is compared against the FOPID 

controller. This benchmarking aims to evaluate the performance 

differences between the two control strategies, highlighting the 

advantages and limitations of each in managing the robotic arm's 

dynamics. The FOPID parameters are listed below in Table 6, 

where Λ is the integral term fractional order, and μ is the 

derivative term fractional order. 

Table 6: Optimal FOPID controller parameters. 

Parameter Upper bound Value Lower bound 

kp 0 7 50 

ki 0 0.01 5 

kd 0 2 0 

Λ 0 0.75 1 

μ 0 0.82 1 

The performance comparison between the SSPID and 

FOPID controllers is evaluated using three reference input 

signals: step, square, and sine waves, the subsequent figures 

present the angular position output for each input type, 

highlighting the superiority of the SSPID controller in key areas. 

Figure 10 illustrates the angular position output with a step 

signal as the reference. Based on Table 7, the SSPID controller 

significantly outperforms the FOPID controller in terms of rise 

time and settling time, achieving a rise time of 0.10539 seconds 

compared to 1.0389 seconds for FOPID, and a settling time of 

1.1979 seconds versus 2.6633 seconds for FOPID. The SSPID 

controller also reaches the peak value in just 1.3067 seconds, 

whereas the FOPID requires 3.5632 seconds, making SSPID 

much faster in responding to the step input. 

Figure 10: The system response for step input considers optimal 

FOPID and optimal SSPID techniques 

Figure 11 shows the angular position output using a square 

wave as the reference. The SSPID controller excels in handling 

the sharp transitions of the square wave, responding with higher 

accuracy and minimal delay. In contrast, the FOPID controller's 

slower rise and settling times result in a delayed response to 

these abrupt changes. Despite FOPID’s inherent flexibility in 

fractional tuning, the SSPID demonstrates superior performance 

in following rapid variations in the input. 

Figure 12 compares the angular position output for a sine 

wave input. However, the SSPID displays more precise phase 

tracking and reduced phase lag compared to the FOPID. 
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Figure 11: The system response for square wave input considering 

optimal FOPID and optimal SSPID techniques 

Figure 12. The system response for sine wave input considering 

optimal FOPID and optimal SSPID techniques 

In Figure 13, the comparison of control signals between the 

optimal Fractional Order PID (FOPID) controller and the 

optimal Sliding Surface PID (SSPID) controller reveals a 

significant difference in their magnitudes. The control signal 

generated by the FOPID controller is approximately half that of 

the SSPID. This disparity can be attributed to the inherent design 

and tuning of the controllers; while the FOPID is optimized for a 

smooth response, it does not exert as much control effort as the 

SSPID. The SSPID, leveraging sliding mode control principles, 

is designed to react more aggressively to disturbances and 

variations in system dynamics, resulting in a higher control 

signal output. Despite the lower signal from the FOPID, it is 

essential to note that the SSPID's enhanced control effort 

translates into faster response times and improved robustness, 

allowing it to maintain better performance under dynamic 

conditions. This comparison underscores the effectiveness of the 

SSPID approach in achieving optimal control performance for 

robotic arm applications, particularly in scenarios requiring 

quick adjustments and resilience against external disturbances. 

 
Figure 13: Comparison of the control signal of Optimal FOPID 

controller against Optimal SSPID Controller 

Table 7 reinforces the fact that the optimal SSPID controller 

is more efficient in terms of rise time, settling time, and overall 

responsiveness compared to the FOPID controller, making it a 

more robust choice for controlling systems such as robotic arms, 

where fast and accurate tracking is critical. 

Table 7: Specifications of the considered systems based on 

Optimal SSPID and Optimal FOPID controller 

Parameter Optimal SSPID Optimal FOPID 

Rise Time (sec) 0.10539  1.0389  

Settling Time (sec) 1.1979  2.6633  

Peak (degrees) 50  50  

Peak Time (sec) 1.3067  3.5632  

4.3. Robustness Evaluation of an Optimal SSPID Controller 

Versus an Optimal PID Controller in a Robotic Arm Model 

In this section, we analyze the robustness of the optimal 

SSPID and optimal PID controllers for the robotic arm model 

under parameter variations. Two case studies are presented 

where the system parameters - specifically armature resistance, 

armature inductance, and load mass - are varied by 20% and 

50%. These variations affect the transfer function of the robotic 

arm, allowing us to assess the controllers’ ability to maintain 

performance under non-ideal conditions.  

In the first case study, the system parameters are varied by 

20%. The performance of both the optimal PID and optimal 

SSPID controllers is evaluated and compared. Figure 14 shows 

the output variation of the robotic arm controlled by the optimal 

PID controller when the parameters are changed by ±20%. The 

angular position varies significantly for each case, indicating that 

the optimal PID controller's performance is affected by the 

parameter changes. 

 
Figure 14: The system response due to parameters 20% variation for 

optimal PID controller 

Table 8 presents the robotic system specifications, where the 

rise time, settling time, and peak values for different variations 

(0.8x, 1.0x, 1.2x of the original values) are listed. 
Table 8. Specifications comparison of Optimal PID controller 

robustness in case of 20% parameter variations 

Parameter 0.8 x x 1.2 x 

Rise Time (sec) 0.46447  0.59677  0.74003 

Settling Time (sec) 2.1543  1.9125  2.1653 

Peak (degrees) 51.8  50.8  50.2  

Peak Time (sec) 1.9495  2.2083  2.5698  
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Figure 15 shows the output variation of the robotic arm 

controlled by the optimal SSPID controller for the same 20% 

parameter variation. Unlike the PID controller, the SSPID 

controller maintains a nearly constant angular position across all 

variations, demonstrating its robustness. 

 
Figure 15: The system response due to parameters 20% variation for 

optimal SSPID controller  

Table 9 shows the corresponding numerical results, 

confirming minimal changes in rise time, settling time, and peak 

values. 
Table 9. Specifications comparison of Optimal SSPID 

controller robustness in case of 20% parameter variations. 

Parameter 0.8 x x 1.2 x 

Rise Time (sec) 0.11414 0.10539  0.10475 

Settling Time (sec) 1.2002 1.1979  1.1972 

Peak (degrees) 50 50  50 

Peak Time (sec) 1.3781 1.353  1.3015 

The results from this case study demonstrate that the SSPID 

controller is significantly more robust than the PID controller, as 

its performance remains stable despite the parameter changes, 

whereas the PID controller exhibits noticeable variations in key 

performance metrics. 

In the second case, the system parameters are varied by 50% 

to further test the robustness of the controllers. Figure 16 

illustrates the output variation of the robotic arm controlled by 

the optimal PID controller under a 50% parameter variation. As 

seen in the previous case, the PID controller’s performance is 

notably impacted, with changes in rise time, settling time, and 

peak angular position. 

 
Figure 16: The system response due to parameters 50% variation for 

optimal PID controller 

Table 10 provides the quantitative data highlighting the 

significant variations in performance. 

Table 10: Specifications comparison of Optimal PID controller 

robustness in case of 50% parameter variations 

Parameter 0.5 x x 1.5 x 

Rise Time (sec) 0.28709  0.59677  0.96261 

Settling Time (sec) 2.3633  1.9125  1.913  

Peak (degrees) 55.8  50.8  50  

Peak Time (sec) 1.6192  2.2083  3.3034  

 
Figure 17: The system response due to parameters 50% variation for 

optimal SSPID controller 

Figure 17 presents the output variation for the optimal SSPID 

controller under the same 50% variation. Similar to the 20% 

variation case, the SSPID controller maintains consistent 

performance, with very little change in the angular position 

response. 

Table 11 details the numerical values, which show minimal 

deviation from the nominal case, further confirming the 

robustness of the SSPID controller. 

Table 11: Specifications comparison of Optimal SSPID 

controller robustness in case of 50% parameter variations 

Parameter 0.5 x x 1.5 x 

Rise Time (sec) 0.12316  0.10539  0.08774  

Settling Time (sec) 1.2133  1.1979  1.1841 

Peak (degrees) 50  50  50  

Peak Time (sec) 1.345 1.353  1.3658  

From the results of both case studies, it is clear that the 

optimal SSPID controller exhibits superior robustness compared 

to the optimal PID controller. While the PID controller 

experiences significant variations in its response characteristics 

when the system parameters are varied, the SSPID controller 

maintains nearly identical performance. This robustness is 

critical for applications where system parameters are uncertain 

or subject to change, making the SSPID controller a more 

reliable choice for controlling robotic arms in such 

environments. 

5. Experimental Design and Results 

To evaluate the real-world performance of the optimal SSPID 

and optimal PID controllers, an experimental model of a single-

joint robotic arm was constructed. This section describes the 

experimental setup, the control circuit, and the comparison of 

angular position outputs from both controllers. 
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The experimental setup consisted of a single-joint robotic 

arm with a mass of 0.85 kg, driven by a brushed DC motor. The 

arm's reference position was set to the horizontal (0 degrees), 

serving as the starting point for all experiments. The angular 

position of the robotic arm was measured using a carbon-film 

potentiometer with a measurement range of 220 degrees, which 

was coupled to the motor shaft via copper gears for accurate 

position feedback. The output response was observed and 

recorded using a PeakTech P 1337 oscilloscope, capable of 

measuring signals with 100 MHz bandwidth and supporting 2 

channels for simultaneous data collection. 

 
Figure 18: Experimental Setup of Robotic Arm Model 

The control circuit, designed for this experiment, was 

implemented using the Arduino IDE and the Arduino C 

programming language.  

Figure 18 provides an overview of the experimental setup, 

while Figure 19 shows the detailed control circuit diagram. 

 
Figure 19: Control Circuit of the Model.   

Figure 20 presents the angular position output comparison 

between the optimal PID and optimal SSPID controllers during 

the experiment. The results show a consistent performance 

advantage for the SSPID controller in terms of tracking accuracy, 

rise time, and response stability. 

 
Figure 20: Experimental output comparison between Optimal SSPID 

and Optimal PID controllers 

The experimental results align with the simulation findings, 

reinforcing the superior performance of the SSPID controller 

over the PID controller. The SSPID consistently showed faster 

response times and improved tracking accuracy across different 

types of input signals. Moreover, the controller effectively 

minimized overshoot and steady-state error, critical for 

achieving high-precision control in robotic arm applications. 

In summary, the experimental results confirm that the 

optimal SSPID controller provides enhanced performance over 

the optimal PID and optimal FOPID controller, particularly in 

terms of rise time, settling time, and overall tracking accuracy. 

6. Conclusion 

This research provides a detailed investigation into the 

control of a single-joint robotic arm, benchmarking the 

performance of an optimal Sliding Surface PID (SSPID) 

controller against both an optimal PID controller and an optimal 

Fractional Order PID (FOPID) controller. Through rigorous 

simulation and experimental validation, the SSPID controller 

demonstrated superior performance in terms of robustness, 

response time, tracking accuracy, and overshoot minimization. 

The simulation results highlighted the significant advantages 

of the optimal SSPID controller, particularly under varying 

reference input signals such as step, square, and sine waves. In 

particular, the optimal SSPID controller exhibited faster rise 

times, negligible overshoot, and greater accuracy in tracking the 

reference signal when compared to both the optimal PID and 

optimal FOPID controllers. The robustness of the optimal SSPID 

was further highlighted by its ability to maintain stable 

performance despite 20% and 50% variations in system 

parameters such as armature resistance, inductance, and load 

mass. These variations had a more pronounced negative impact 

on the performance of the PID and FOPID controllers, 

underscoring the SSPID's resilience. 

Future work could extend the proposed control technique to 

multi-joint robotic arms to evaluate its effectiveness in more 

complex systems. Additionally, further exploration of new forms 

of sliding mode control could enhance the adaptability and 

robustness of the SSPID controller in broader control 

applications. 

These results demonstrate the potential of SSPID control to 

significantly outperform traditional PID and FOPID techniques, 

establishing a strong foundation for future research and practical 

implementation in advanced robotic systems. 
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