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 Cold-formed steel members (CFS) are gaining popularity and increasing importance due to their 

construction from thin sheet steel, making them more susceptible to local buckling. This study 

conducts a theoretical analysis focused on the examination of stiffened cold-formed members under 

axial compressive force. The factors influencing the behavior of compressed stiffened cold-formed 

members are identified through collapse load curves. A case study is conducted using a channel 

section of the cold-formed section with and without web stiffener for varying lengths. The theoretical 

analysis is applied to a pin-ended strut consisting of the two flanges without modification for the 

effective width of the web. The results are then compared with the recommendations of BS5400 based 

on the Perry-Robertson formula for estimating the collapse stresses formula. The findings indicate 

that the mathematical modeling in this study can elucidate the interactive buckling behavior of 

stiffened cold-formed members and provide valuable insights into the effect of web stiffener of 

channel section when used as cold-formed members, with the web stiffener consistently altering the 

mode of failure from local failure or interactive failure to overall failure. 
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1. Introduction  

Cold-formed steel members (CFS) in structures are a 

significant advancement in the evolution of steel structures, with 

these members becoming increasingly popular as primary load-

carrying elements in buildings. To enhance buckling resistance, 

more intricate shapes are being designed, as illustrated in Figure 1. 

Extensive research, both experimental and numerical, on the 

behavior of CFS sections has demonstrated that incorporating 

intermediate web stiffeners and edge stiffeners can significantly 

improve the strength of these sections. The thinness of the material 

allows for a more efficient use of resources, but it also poses 

challenges in terms of design limitations, such as restricted 

compression capacities due to low flexural and torsional stiffness 

[1]. These elements, due to their high slenderness ratio, are 

susceptible to two types of buckling: local buckling within the 

cross-section elements, which are typically divided into web plate 

and flange plate elements, and overall buckling along the member's 

length. Ye and Becque [2] conducted a study on cold-formed steel 

(CFS) plain and lipped channels subjected to axial compression, 

focusing on the interaction between local and overall flexural 

buckling. The results of this study were utilized to validate the 

accuracy of design procedures outlined in Eurocode 3 and to assess 

a proposed optimization technique. In a separate study, Young and 

Rasmussen [3,4,5] investigated the ultimate capacity of CFS 

columns in channel form (plain and lipped) under pinned and 

fixed-ended boundary conditions. Their results indicated a 

noticeable shift in the effective centroid due to local buckling in 

pinned columns, while this effect was absent in fixed-ended 

columns. Furthermore, Loughlan and Yidris [6] explored the 

impact of local support conditions on the local-flexural interactive 

behavior of fixed-ended plain channels using numerical analysis.  

 

Figure 1: Different cross-sections of (a) A simple lipped channel; (b) 

A lipped channel with one web stiffener; (c) A lipped channel with 

two web stiffeners; (d) A channel section with one web stiffener and 

return lips; (e) A channel section with two web stiffeners and return 

lips 
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The study concluded that the support conditions at the plate 

ends significantly influence the behavior of the column, 

particularly under loads exceeding the local buckling threshold. 

Batista [7] applies the effective section method, ESM, as a 

continuation of the original effective area method, EAM. ESM has 

been effectively utilized in diverse engineering scenarios. In CFS 

Design, ESM is employed to accommodate local buckling effects. 

By taking into account the actual local buckling outcomes of the 

section, ESM offers more precise forecasts of member behavior 

and resistance, aiding in the optimization of cross-sectional 

dimensions and evaluation of stability under different loading 

conditions. 

Manikandan et al. [8] conducted a numerical and experimental 

investigation into the behavior of cold-formed steel (CFS) channel 

sections with intermediate web stiffeners and outward lips under 

axial compression. The addition of a simple spacer plate externally 

to the channel section in the transverse direction was found to 

enhance the distortional buckling strength of the selected section. 

The finite element software ANSYS was utilized for the numerical 

analysis, which was then validated using experimental results. The 

study concluded that the presence of spacer plates can increase the 

axial capacity of stiffened CFS channel sections by 32%. 

Additionally, Fang et al. [9,10] examined local, distortional, and 

interactive modes of buckling for CFS sections under different 

loading conditions. Beulah [11] investigated the behavior of both 

lipped and unlipped channel sections with different slenderness 

ratios when subjected to axial force. This study involved a 

comparison with various international codes of practice, including 

the Indian Standard Code of Practice for the use of Cold-formed 

Light Steel Structural Members-IS:801, the British Code of 

Practice for Design of Cold-formed Sections-BS:5950 (Part 5), and 

the North American Standard- NAS Manual. Numerical analysis 

was carried out on the post-buckling behavior of channels under 

axial compression and compared with the specifications of 

previous codes. The study compared the load-carrying capacities 

versus axial shortening of lipped and unlipped channels with 

different slenderness ratios. It was observed that, in the case of an 

unstiffened element, the slenderness ratio of 30 to 100 combined 

local buckling, flexural buckling occurs about the minor axis, and 

for sections having a slenderness ratio of 120 to 200 overall 

flexural buckling occurs about the weak axis. Hajirasouliha et al. 

[12] introduced an optimized method for designing laterally braced 

and unbraced columns using lipped channel sections under axial 

loading conditions. They noted a significant 75% enhancement in 

lateral strength. In a separate study, Dinis and Camotim [13] 

delved into the behavior of columns with hat, zed, and rack-shaped 

sections in relation to local distortional buckling. The research also 

discussed the local-distortional interaction that impacts the failure 

mode and load-carrying capacity. Furthermore, Hajirasouliha and 

Becque [14] suggested the appropriate selection of lipped channel 

sections by analyzing the interaction between local and overall 

flexural buckling modes. Aswathy and Kumar [15] demonstrated 

that reducing the stiffness or depth of the lip in stiffened and 

unstiffened lipped channel sections during axial loading can lead 

to an increased risk of distortional buckling. Additionally, Kumar 

and Kalyanaraman [16] highlighted that the strength of 

compression members composed of CFS lipped channel sections 

diminishes due to the interaction between buckling modes during 

axial loading. They emphasized the necessity of employing the 

direct strength method approach to accurately predict load and 

buckling interaction for individual buckling modes. Finally, Dar et 

al. [17] opted to study short columns experimentally instead of 

slender columns based on numerical investigations. Their findings 

indicated that the ultimate capacity of the column is influenced by 

the slenderness ratio, which impacts the behavior of battens in the 

built-up column under loading conditions. 

2. Research significance 

The (CFS) subjected to axial loading may experience buckling 

through one of three modes: local, overall, or interactive buckling, 

which is a combination of the first two modes. Local buckling can 

occur within the cross-section component, while overall buckling 

can occur in the overall direction of the member. The potential 

failure modes can be categorized as follows: 

1- Overall failure if overall buckling occurs before local buckling. 

2- Local failure if local buckling occurs before overall buckling. 

3- Interactive failure if both overall and local buckling happen 

simultaneously. 

The current investigation aimed to analyze the interactive 

buckling behavior of axially loaded channels, a topic that has been 

explored by various researchers. Abdel-Lateef [18,19] introduced 

an analytical method to study the non-linear interactive buckling 

behavior of such structural members until reaching the ultimate 

load, considering both local and overall initial imperfections. 

Gamal-Eldin [20] utilized the finite element method to analyze the 

interaction behavior of initially deflected and eccentrically loaded 

thin-walled channel sections, with the calculated critical stress 

incorporating local buckling effects. Ohaga et al. [21] employed 

the transfer matrix method to address elastic buckling issues of 

cold-formed steel (CFS) members with constant and variable 

thickness cross-sections. Khong [22] proposed a semi-numerical 

technique to reduce matrix size in the conventional finite element 

method, specifically applicable to thin-walled structures with 

sudden changes in thickness or material properties in the transverse 

direction. Kiong [23] introduced a finite element approach that 

combines the one-dimensional beam-column and modified thin 

plate element, representing the flange as a beam-column element 

and the web as a single plate element. 

3. Analysis 

CFS can experience failure in compression due to local, 

distortional, or overall buckling, as well as any potential 

interaction between these modes. Depending on factors such as the 

slenderness ratio of cross-section elements, loading conditions, 

and end boundary conditions, one of the buckling modes or a 

combination of buckling modes may manifest [24-27]. In this 

study, the approach involved separately estimating overall 

buckling and local buckling, with and without web stiffeners, and 

then analyzing the impact of these elements on the interactions of 

buckling modes. The influence of axial load on CFS resulted in the 

following sequence of events, illustrated in Figure 2: 

a) The bending stress distributions applied to a locally buckled 

member. 
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b) An increase in compressive stress on the concave side, 

leading to a further reduction in effective width. 

c) Unloading occurring on the convex side of the member, 

causing parts of the elastically buckled plate to become 

effective again, resulting in a shift of the web-centered axis 

to a new position [26]. 

 
Figure 2: Effect of axial load on CFS with different sections 

The displacement of the neutral axis can be illustrated as a 

compressive force (CFS) that is applied eccentrically at a distance 

(𝑒), considering initial imperfections as a secondary influence on 

these structural elements, as depicted in Figure 3. 

 

Figure 3: Effect of initial imperfection on overall buckling for 

eccentrically loaded member 

3.1. Generating the Post-Buckling Equations  

The deflection shape w of the buckled plate is determined by 

the physical boundary conditions. The buckled shape of simply 

supported rectangular plate ( 𝑎, 𝑏 ) as shown in Figure 4 are 

described by Fourier series as follows, 

𝑧 = ∑ ∑ 𝐴𝑚𝑛 sin
𝑛𝜋

𝑎
𝑥 sin

𝑚𝜋

𝑏
𝑦 𝑛=∞

𝑛=1  𝑚=∞
𝑚=1         (1) 

The half-wave length a depends on the plate (web) edges 

restraint, i.e., on the torsional stiffness of the cross-section flanges. 

The value of (𝑎 = 𝑏) corresponds to simply supported web edges 

(flanges with negligible torsional rigidity). At critical load the flat 

state of the plate becomes unstable, and new stable forms with 

deflection takes place, whose shape determined from the following 

differential equations, 

𝜕4𝑧

𝜕𝑥4 + 2
𝜕4𝑧

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑧

𝜕𝑦4 =
𝑡

𝐷
[𝜎𝑥

𝜕2𝑧

𝜕𝑥2 + 𝜎𝑦
𝜕2𝑧

𝜕𝑦2 −

2𝜏𝑥𝑦
𝜕2𝑧

𝜕𝑥 𝜕𝑦
]  

(2) 

When using airy stress function ∅, Eq. (2) may be written as 

follows, 

𝜕4𝑧

𝜕𝑥4 + 2
𝜕4𝑧

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑧

𝜕𝑦4 =
𝑡

𝐷
[∅̈

𝜕2𝑧

𝜕𝑥2 +

∅′′ 𝜕2𝑧

𝜕𝑦2 − 2∅̀
𝜕2𝑧

𝜕𝑥 𝜕𝑦
]  

 

 

(3) 

Where; 𝜎𝑥 = ∅,̈  𝜎𝑦 = ∅′′, 𝑎𝑛𝑑 𝜏𝑥𝑦 = −∅̀ 

The compatibility equation of flat plat since follows, 

∅′′′′ + 2∅′′ + ∅⃛̈ = 𝐸[𝑧′2 − 𝑧′′𝑧̈]  (4) 

Assume that the buckled web plate waving and the physical 

boundary conditions as square plate as shown in Figure (4). 

 

Figure 4: Deflection shape for plate buckling 

The deflection shape z shown determined as follows: 

𝑧 = 𝐴1 cos
𝜋

𝑎
𝑥 cos

𝜋

𝑎
𝑦 + 𝐴2 sin2

𝜋

𝑎
𝑥 sin2

𝜋

𝑎
𝑦    (5) 

If the plate being initially imperfect then the imperfection 

functions being as follows, 

𝑧𝑜 = 𝐴𝑜 cos
𝜋

𝑎
𝑥 cos

𝜋

𝑎
𝑦  (6) 

The solutions of Eqs. (3), and (4) has been derived for combined 

loading by [26]. Herein, the solution is being dominated for case 

of compression only as follows, 

1. Assume that the stress function may be written as, 

  ∅ = ∅1 + ∅2  (7) 
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where; ∅1, 𝑎𝑛𝑑 ∅2 are a particular solution and a complementary 

solution for the biharmonic equation, 

  ∅′′′′ + 2∅′′ + ∅⃛̈ = 0  (8) 

Substituting the deflection function in Eq. (6) and replaces w by 
(𝑧 − 𝑧𝑜), 

Boundary conditions without taking the effect of shear stresses 

term are, 

At 𝑥 = ±
𝑎

2
     , and at 𝑦 = ±

𝑎

2
 

(
1

𝑎
∫ ∅̈ 𝑑𝑦 = 𝜎𝑥

𝑎
2

−𝑎
2

)    , and  (
1

𝑎
∫ ∅′′ 𝑑𝑥 = 0

𝑎
2

−𝑎
2

)  

 The general solution of stress function ∅  in Eq. (7) for 

compression case only was found to be, 

∅ = −𝐴1
2 𝐸

32
(cos 2𝛽𝑥 + cos 2𝛽𝑦) +

𝐴2
2 𝐸

32
(cos 4𝛽𝑥 + cos 4𝛽𝑦) −

𝐴1𝐴2
𝐸

25
(sin 𝛽𝑥 sin 3𝛽𝑦 + sin 3𝛽𝑥 sin 𝛽𝑦) −

𝜎𝑥𝑎

2
𝑦2 +

𝐴0
2 𝐸

32
(cos 2𝛽𝑥 + cos 2𝛽𝑦)  

 

(9) 

where;  𝜎𝑥𝑎: is the applied stresses, 𝛽 =
𝜋

𝑎
. 

The form of Eq. (9) satisfies the boundary conditions without 

placing conditions on the unknown coefficients 𝐴1 , 𝐴2. 

Applying Galerkin’s method for the Eq. (3) for determine the 

unknown terms 𝐴1 , 𝐴2 as follows, 

∫ ∫ [𝐷 (𝑧′′′′ + 2𝑧̈′′ + 𝑧 − 𝑡(𝑧′′∅̈ − 2𝑧′∅′ +
𝑎
2

−𝑎
2

𝑎
2

−
𝑎

2

𝑧∅′′))] × 𝐴1 cos 𝛽𝑥 cos 𝛽𝑦 𝑑𝑥 𝑑𝑦 = 0  (10) 

∫ ∫ [𝐷 (𝑧′′′′ + 2𝑧̈′′ + 𝑧 − 𝑡(𝑧′′∅̈ − 2𝑧′∅′ +
𝑎
2

−𝑎
2

𝑎
2

−
𝑎

2

𝑧∅′′))] × 𝐴2 sin 2𝛽𝑥 sin 2𝛽𝑦 𝑑𝑥 𝑑𝑦 = 0  (11) 

 After applying Galerkin’s method in Eq. (10 and 11) based on 

the integral factors have been be computed by Abdel-Lateff [18-

19] the follows equations are obtained, 

(𝐴1 − 𝐴0) − 0.34𝐴1𝐴0
2 − 𝐴1𝐶 + 0.88𝐴1𝐴2

2 = 0  

(12) 

16𝐴2 − 4𝐴2𝐶 + 5.5𝐴2
3 + 0.88𝐴1𝐴2

2 =  0  

(13) 

The stresses of web plate corners 𝜎𝑥 , 𝜎𝑦 shown in Figure (6), 

may written as follows, 

𝜎𝑥

𝜎𝑐𝑟

= −0.34 (𝐴1
2 + 4𝐴2

2
,
+ 3.2𝐴1𝐴2) − 𝐶 =  0  

(14) 

𝜎𝑦

𝜎𝑐𝑟

= −0.34 (𝐴1
2 + 4𝐴2

2
,
+ 3.2𝐴1𝐴2) =  0 

(15) 

Where: C is the ratio between the applied normal stress to the 

critical stress of the web plate. 

The member can fail under a greater force and deflection if the 

web plate is provided with web stiffener as shown in Figure (5), 

If the deflection function w and the initial imperfection wo 

written as follows, 

𝑤 = 𝑎𝑠𝑖𝑛
𝑚𝜋

𝐿
𝑥, 𝑤𝑜 = 𝑎𝑜 𝑠𝑖𝑛

𝑚𝜋

𝐿
𝑥 (16) 

The ultimate force after applying principle of Energy method 

[26], 

𝑃 =
𝑃𝑐𝑟𝑎

𝑎+𝑎𝑜+1.27𝑒
  (17) 

From bending theory, the normal stress (stress in overall 

direction) equal to, 

𝑓𝑥𝑎 = − (
𝑃

𝐴
+ 𝑤𝑃𝑐𝑟

ℎ

𝐼𝑦
)   

(18) 

 
Figure 5: Effect of web stiffener on local buckling of web 

where the critical stress at this case is, 

𝑓𝑐𝑟 =
16𝜋2𝐸

12(1−𝑣2)
(

𝑡

𝑏
)

2

  
 

(19) 

 
Figure 6: Stresses Distribution at the Plate Corners 

The equivalent stress is computed according to Von-miss 

equation as follows, 

𝜎𝑒𝑞 = (𝜎𝑥
2 + 𝜎𝑦

2 − 𝜎𝑥𝜎𝑦)0.5 (20) 

When considering the relationship between the applied stress 

and the average strain over the length of the plate, there are two 

stiffness factors 𝑛𝑡, 𝑛𝑠 as follows: 

The elastic tangent stiffness of the plate 𝑛𝑡 represents the local 

slope of the curve related to the average applied stress and the 

average strain or the local elastic stiffness of the plate. 
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The secant stiffness 𝑛𝑠  is defined as the ratio between the 

applied stresses and the corresponding strain at each load level. 

Initially, the web exhibits a local imperfection 𝑧𝑜, which leads 

to a reduced stiffness and thus to an effective second moment of 

area of the entire cross-section even before the load is applied. 

𝑏𝑒 = 𝑛𝑡𝑏 (21) 

The stress at this case equal to, 

𝜎𝑥𝑎 = −𝑛𝑠(
𝑃

𝐴𝑟
+ 𝑤𝑃𝑐𝑟

ℎ

𝐼𝑦
)  

(22) 

The reduced values of stress produce another value of 𝐶, then 

through previous equations, the applied stress on the member will 

reach its maximum, 𝑠𝑚𝑎𝑥 , when 𝑠𝑒𝑞  reaches the material yield 

stress 𝑠𝑦 . 

4. RESULTS And Discussion  

As already explained, the (CFS) can buckle in one of three 

modes under axial loading. These modes are local buckling, 

general buckling and interactive buckling as a combination of the 

first two modes. This paper shows how web stiffening helps to 

change the buckling modes from local or interactive buckling to 

general buckling modes. The economic use of (CFS) when 

collapse is due to general buckling would be similar to hot rolled 

sections that do not suffer from local buckling. 

Fig.(7-a) and (7-b) show that, the ductility in the case of web 

stiffening changes linearly with the length of the component and 

can be predicted for different lengths. On the other hand, the same 

relationships are not linear if the web is not stiffened in the cross-

section. Figs. (8-a) and (8-b) show that for different degrees of 

initial imperfection, the initial slopes of the curves of the 

relationships between the bearing capacity and the deflection are 

higher in the case of the web cross-section with stiffening than in 

the case of the web cross-section without stiffening. Fig. (9-a) and 

(9-b) show that the effect of the web stiffener on the increase of 

the bearing capacity at different degrees of initial imperfection, the 

curves of the relationships between length and bearing capacity 

also increase steadily in contrast to the same web cross-section 

without stiffener. 

As this research is discussing the behavior of stiffened (CFS) 

under compression through a theoretical analysis based on some 

assumptions. Therefore, the results of computer program should be 

compared with the recommendation of the BS5400 [28], based on 

Perry-Robertson formula for estimating the collapse stresses, 

where this formula is treated for pin ended strut consisting of the 

two flanges and without modification for the effective width of the 

web. These curves were drawn together with the curves from the 

present analysis. For high accuracy this formula is used in this 

research for check the results in cases of overall initial 

imperfection only, as this formula is used for hot rolled sections 

which are not suffer from local buckling. Figs.(10-a) and (10-b) 

show the comparison of results when applying of the Perry-

Robertson formula on the basic cross sections provided with or 

without web stiffener for length (L= 4000mm). 

 
 

 

(a) Normal section 

 

(b) Stiffened section 

Figure 7: Ductility percentage for normal section and stiffened 

section 
 

 

(a) Unstiffened section 

 
(b) Stiffened section 

Figure 8: Relations between stiffness and length for unstiffened and 

stiffened section 
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(a) Unstiffened section 

 
(b) Stiffened section 

Figure 9: Relations between bearing capacity and length for 

unstiffened and stiffened section 

 
(a) Unstiffened section 

 
(b) Stiffened section 

Figure 10: Collapse stresses for local failure for unstiffened and 

stiffened section 

 

The effect of web stiffener is remarked in changing the mode 

failure of member from local failure to overall failure. The 

difference between results at this case is very clear because local 

failure is mainly based on that the member is collapse as a result 

local buckling, but Perry-Robertson formula depends mainly on 

overall buckling. Figs.(11-a) and (11-b) for (CFS) with length (L= 

5000 mm) show the effect of web stiffener in changing the mode 

failure of member from interactive failure to overall failure, but for 

this case the difference between results is more nearly than 

previous case. Figs.(12-a), and (12-b) show (CFS) with length (L= 

6000mm), the comparison between results from Perry-Robertson 

formula, as in this case the effect of web stiffener on in changing 

results may be negligible.  

 

(a) unstiffened section 

 

(b) Stiffened section 

Figure 11: Collapse stresses for overall failure 

 

It can be seen from these figures, that if the (CFS) being with 

high slenderness ratio, then the member fails by the overall failure 

where the results are nearly approximately at different degree of 

slenderness ratio, and for different degree of overall initial 

imperfections. These remarks are due to disappear effect of local 

buckling and the collapse is being due to overall buckling only. 

Also, it is very important to notice, that the present work is 

considering the movement of the neutral axis position due to plate 

buckling. Due to this effective, a change in neutral axis position is 

takes place and the applied concentric load induced bending. 
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(a) Unstiffened section 

 
(a) Stiffened section 

Figure 12: Collapse stresses for overall failure 

 

5. Conclusions 

The mathematical modeling for the interactive buckling 

explained in this paper can make a useful contribution by 

providing a mean of explaining the behaviour of stiffened (CFS). 

So far, we have considered the effect of web stiffener in reducing 

the local buckling effect for both of perfect and imperfect members. 

This paper shows the effect of web stiffener on the behaviour 

of compression (TWM) through the following results, 

1. The web stiffener always change mode of failure from local 

failure or interactive failure to overall failure. 

2. Overall failure for compression (CFS) is approximately as the 

failure of hot-rolled sections. 

3. The stiffener for compression (CFS) fails by overall failure may 

be negligible. 

4. The relations between ductility and length at case of web 

stiffener is at linear form. 

5. The relations between ductility and length at case of normal 

section is at non-linear form. 

6. Web stiffeners rise the stiffness of the thin-walled compression 

member. 
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Symbols 

CFS Cold Formed Steel. 

𝐿 , 𝑏 , 𝑡  Length of member, width and plate thickness. 

I Moment of inertia of cross section. 

A Area of cross section. 

P Applied compression force. 

PE Euler’s critical load =𝜋2𝐸𝐼
𝐿2⁄  

fxa Stress in overall direction. 

Fy ,E Material yield stress and Modulus of Elasticity. 
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