

--

Vol. 44, No. 1, January 2025

Development and Implementation of pipeline Convolutional Coding

using FPGA

Sara M. Hassan1,*, Aziza I. Hussein2, Ashraf A. Khalaf3

1 Electronics and Communications Engineering Dep., Modern Academy for

Engineering and Technology, Cairo, Egypt

2 Electrical and Computer Engineering Dep., Effat University, Jeddah, KSA
3 Electrical Engineering Dep., Faculty of Engineering, Minia University, Minia, Egypt

* Corresponding author(s) E-mail: sara.hassan@eng.modern-academy.edu.eg

A R T I C L E I N F O A B S T R A C T

Article history:

Received: 9 June 2024

Accepted: 17 September 2024

Online: 10 March 2025

 Channel coding is essential for ensuring reliable data transmission in challenging wireless

communications. Improving spectrum efficiency involves leveraging efficient forward error

correction (FEC) methods. Viterbi decoding plays a critical role in Convolutional channel coding for

accurate error detection and correction, particularly in LTE and Satellite communication systems.

This article discusses the simulation and FPGA implementation of a newly proposed non-systematic

Convolutional system featuring a block interleaver and 64-QAM Mapping under AWGN and

Rayleigh channel conditions. The system adopts a Convolutional coding rate equal to 1/3 and a

constraint length of 7, utilizing a Trellis-diagram for encoding and the Viterbi-algorithm for decoding

with hard decision decoding. Additionally, a pipeline coding approach is employed. Simulations are

conducted using MATLAB-R2023b, and the implementation is executed on Virtex 6 (XC6VLX240T)

FPGA using Xilinx 14.7. The study reveals that the pipeline technique demands more FPGA resources

compared to traditional methods while still utilizing a small resource block from Virtex 6, with 3%

and 9% usage of slice registers and LUTs, respectively. Moreover, the system's timing is reduced

from 24 to 14 clock cycles, enhancing the efficiency of entirely LUT-FF pairs from 55% to 63%.

Keywords:
Convolutional coding,

FPGA,

Forward error correction,

Viterbi decoding,

VHDL

1. Introduction

In modern digital communications systems, particularly in

satellite communications; 4G and 5G mobile generation, Forward

Error Correction (FEC) is becoming more well acknowledged for

its advantages and prospective benefits. As a result, channel

coding is increasingly important in the design of these systems

[1]. The primary difficulty with FEC systems usually lies in the

real development of strong decoders that will work with large

amounts of information, provide less mistake probability while

remaining effective and not overly hard to accomplish. The

difficulty of engineering and producing rapid encoding and

decoding equipment at the cheapest feasible budget has been

exacerbated when information rates grow, extending into

hundreds of several mega-bits for each second (Mbits/s) as well

as greater. [2-6].

Convolutional encoding is commonly employed in order to

encode information through FEC methods. The upcoming

decoding was carried out via Viterbi decoding. Convolutional

encoding and Viterbi decoding are especially well-suited for

wireless channels. The signal being transmitted is primarily

distorted by additive white Gaussian noise. Convolutional codes

are frequently preferred over block codes in practice since they

were one of the first codes for which algorithms were devised [7-

9]. Block codes accept discrete blocks of k-symbols and output

blocks of n-symbols that only rely on the k input symbols.

Convolutional codes are commonly referred to as streaming codes

because they frequently work on a continuous flow of symbols

rather than separate messaging chunks. Those have remaining

rates (R = k/n codes), which accept k fresh symbols at every time

period and generate n brand-new symbols [10-11]. This research

introduces a design and implementation of digital communication

kit, modeling the error detection and repair mechanisms in digital

data sent by AWGN and Rayleigh. The Rayleigh channel impact

was considered since fading channels are useful approximations

of real-world occurrences in wireless communication, and there

were no burst defects in the AWGN scenario to assess the

advantages of block interleavers [12]. Gaussian white noise is an

assortment of additive noise that is typically encountered in

electrical circuits and has a Gaussian distribution with all

frequencies in existence. It is characterized by a zero mean and

variance parameter, which specifies the amount of noise in the

input. The high speed and pipelining properties of the FPGA

processor, together with pipeline coding, have been used to reduce

processing time and hence boost data throughput. Previous studies

offered some strategies to expedite and increase the error

detection and repair processing for convolutional coding using

MATLAB simulation but did not introduce or provide any real-

time implementation strategies. [13–16]. However, the pipeline

technique has the advantage of introducing more time response

while maintaining acceptable system complexity and eliminating

the necessity for mathematical operations reduction. [17] used a

parallel Viterbi MATLAB simulation of the AWGN channel

effect. While [18] produced the pipeline VLSI for the Viterbi

decoder, [19] built another Viterbi decoder architecture

employing an ASIC application.

This article provides the MATLAB simulation and FPGA

implementation of the suggested non-systematic Convolutional

system with block interleaver and 64-QAM mapping over the

AWGN and Rayleigh channels impact. The suggested

368

mailto:sara.hassan@eng.modern-academy.edu.eg

--

convolutional coding system parameters are equivalent to those

employed for LTE prior to turbo-coding [20-21]. The

Convolutional coding rate (k/n = 1/3) and constraint length is (L

= 7). The encoder applies a trellis diagram, and the decoder

employs the Viterbi algorithm with hard decision decoding.

Pipeline implementations for convolutional coding are created,

and their complexity is evaluated. The simulation was executed

out using MATLAB (version R2023b). The implementation has

been carried out making use of the Virtex 6 (XC6VLX240T)

FPGA kit and VHDL codes. The VHDL codes were written using

Xilinx package version 14.7. The results of the simulation were

displayed via the ISim simulator. The originality of this article

stems from the simulation of a newly proposed system that

combines a non-systematic convolutional system with a block

interleaver and 64-QAM mapping, specifically designed for

operation under AWGN and Rayleigh channel conditions.

Furthermore, the article includes the FPGA implementation of

this proposed system, along with a comparison of results obtained

from both the simulation and the implementation. The second

section of the article is headed "The proposed system block

diagram". Section three illustrates the system's FPGA use, while

Section four discusses pipeline coding. Section five provides full

system verification, whereas Section six offers the conclusions.

2. The Proposed System Block Diagram

This section offers a proposed block diagram for

Convolutional Coding. The block diagram includes three phases

in the transmitter and reverse actions at the receiver. The first

stage of the transmitter is a convolutional encoder which employs

a trellis diagram, while the Viterbi algorithm applies in the

receiver. The second stage is a block interleaver, and the third

stage is the Mapper. The Mapper output data is sent over the

AWGN or Rayleigh channel. Fig. 1 illustrates the suggested

convolutional channel coding block diagram.

Figure 1: Convolutional channel coding block diagram

2.1. Convolutional coding

In Convolutional processing, information pieces arrive

sequentially instead of in huge chunks. The label Convolutional

description comes from the reality that redundant information is

produced by modulo-2 convolutions at a convolutional encoder.

The convolutional encoder can be thought of as a finite-state

machine that includes an M-stage shift register, modulo-2

addition machines, and multiplexing devices. A convolutional

processor has k entries and n outcomes; hence, its rate equals k/n.

The makers to convolution-coding circuits frequently define the

algorithms by employing quantities (n; k; L). An amount L is

referred to as the code's constraint length, and it reflects the largest

number of bit values in the single output flow might be impacted

by any given input bit. Fig. 2 illustrates a non-systematic

convolution encoder with an execution rate of 1/3. Equations (1,

2, and 3) can be used to represent the output response stream yi(n)

of the rate 1/3 linearly convolution encoding.

y1(n) = x(n) + x(n-1) + x(n-2) + x(n-3) + x(n-6) (1)

y2(n) = x(n) + x(n-2) + x(n-3) + x(n-5) + x(n-6) (2)

y3(n) = x(n) + x(n-1) + x(n-2) + x(n-4) + x(n-6) (3)

Thus, the encoder's binary impulse responses are as follows:

g1(n) = (1111001), g2(n) = (1011011), and g3(n) = (1110101).

The constraint length "L" of a convolutional code is equal to the

total length that defines the longest entry shifting register with the

maximum number of storage elements in addition to one. m

indicates the number of memory cells (shift register). Fig. 2 shows

a rate of 1/3 for the non-systematic convolution encoding, which

contains six memory cells. With m=6 and L = m + 1 = 7, the

number of states is 2^m = 2^6 = 63. As a result, the corresponding

state diagram of the trellis algorithm contains 63 transition states.

Table 1 displays the state transition diagram for the assumed input

sequence (1 0 1 0). Fig. 3 depicts the ISim simulation of

convolutional encoder results when the reset equals zero. The

memory cells are initialized with zeros and the current state

(000000). When the reset is equal to one and the clock is high, the

output sequence carried out as expected from state transitions as

shown in Table 1. Fig. 4 depicts the convolutional encoder RTL

schematic. The convolutional decoder by Viterbi algorithm is the

reverse operations of encoder processing (backward direction on

trellis). Fig. 5 illustrates the convolutional decoder RTL

schematic. Fig. 6 depicts the Bit Error Rate (BER) performances

of the convolutional encoder and decoder over the AWGN and

Rayleigh channels performed with a hard decision. The chart

additionally demonstrates the improvement in BER caused by

Convolutional coding versus an un-coded system.

Figure 2: Rate 1/3 of the non-systematic Convolutional Encoder

Table 1: The state transitions diagram for assuming input sequence

(1 0 1 0)

369

--

Figure 3: The ISim simulation of Convolutional Encoder results

Figure 4: The RTL Schematic of Convolutional Encoder

Figure 5: The Convolutional Decoder RTL Schematic

Figure 6: The BER performance of Convolutional Coding through

an AWGN and Rayleigh channels simulated via MATLAB

simulation

2.2. Interleaver

A block interleaver takes a set of symbols and rearranges

them so that none of the symbols are repeated or omitted. For each

particular interleaver, the number of symbols in each set remains

constant. The convolutional interleaver is a data reordering

technique that distributes bursts of mistakes and improves the

efficiency of FEC algorithms in the presence of dropouts. The

BER performance of convolutional can be considerably enhanced

by using interleavers since they change the spacing attributes of

the code through preventing low-weight code words. Block

interleavers are an increasingly common type of interleaver in

communication-systems. It populates the array by streaming the

incoming information bit row by row before sending out the

information column by column. Fig. 7 depicts a block interleaver

the inputs are [01 … 100 … 1...… 0 …100 … 1] and the output

is [00 … 00 … 1 … 0 … 1 … 01 … 1 1].

Figure 7: Block Interleaver write read ranking

The goal of bit-based interleaving is to optimize a system's

diversity order while scattering burst faults caused by associated

fading channels. Make the bit in relation to the transmission

symbol not correlated or independent of one another. Fig. 8

demonstrates block interleaver operation. Fig. 9 displays the

MATLAB results of the interleaver output with the entry from the

Convolutional-Encoder output. The data that is entered (111 101

000 011) is the encoder trellis algorithm output, whereas the

output of the Block Interleaver is (1100 1001 1101). Fig. 10

depicts the VHDL ISim simulation results of the block interleaver.

As demonstrated in the figures, the ISim simulation findings are

similar to the MATLAB simulation outcomes.

Figure 8: Block Interleaver operation

Figure 9: The block interleaver results by MATLAB command

window

370

--

Figure 10: The ISim simulation results of block interleaver

2.3. Mapper

The Mapper with type M-QAM (M=64) is represented by

the digital modulation constellation diagram. The Baseband

symbols assign the outcome data acquired from the block

interleaver to the Mapper input. That involves the I and Q

components. The in-phase component is denoted as I, whereas the

quadrature component is represented by Q. Fig. 11 illustrates the

binary scatter plot. Fig. 12 displays the constellation diagram for

the 64-QAM Mapper. Fig. 13 demonstrates the results of the DE-

Mapper block's MATLAB simulation. While Fig. 14 displays the

VHDL implementation Mapper RTL Schematic, (data_out)

denoted the concatenated real and imaginary mapped data. Fig. 15

depicts the ISim simulator mapping results with the input

sequence (1100 1001 1101) representing the preceding stage's

output data (block Interleaver).

Figure 11: The scatter plot for the 64-QAM Mapper

Figure 12: The binary constellation diagram for the 64-QAM

Mapper

Figure 13: Simulation results for the DE-Mapper block

Figure 14: The RTL Schematic for Mapper

Figure 15: Mapping findings from the ISim simulator

3. FPGA UTILIZATION

The real-time implementation in this section is accomplished

using the Virtex 6 (XC6VLX240T) FPGA kit. Fig. 16 illustrates

an FPGA kit in usage. Table 2 illustrates the Virtex 6's overall

system resource utilization. It is evident that the proposed

convolutional coding technique makes use of only a fraction of

Virtex 6's resource blocks. As seen in the table, the amount of

used slice registers and look-up tables (LUTs) are extremely low,

at 1% and 2%, respectively. There are a large number of totally

LUT-FF pairs (55% utilization efficiency).

Figure 16. FPGA Kit for Virtex 6 (XC6VLX240T)

371

--

Table 2: The Virtex 6 whole system utilization

4. Pipeline Coding

The Trellis diagram performs convolution coding at the

transmitter, and the same diagram, with 63 transition states in this

suggested system scenario, is carried out at the receiver in a back-

direction process known as the Viterbi Decoding method. In this

section, the Encoding Diagram and Decoding Viterbi algorithm

operations are performed using pipeline processing. The Viterbi

algorithm works by following a coded-sequence {s0, s1, ...} or its

signal-mapped counterpart {x0, x1, ...}, which equivalent to the

path across the encoder-trellis. As a result of channel noise, the

receiving sequence r might not have been perfectly equivalent to

the path across a trellis. The algorithm for decoding identifies the

path across the trellis that is most similar to the incoming

sequence, where nearest is measured using the probability

functioning proper for the channel. In context of the usual

procedure, the next decoding phase operation does not begin until

all of the previous path operations have been completed. As a

result, this behavior, which might occur in the regular Viterbi

decoding method, requires a long processing time. The pipelined

method is an effective solution for the preceding problem since

each clock initiates a new phase of the decoding procedure. At

the end of the algorithm's clock cycles, the final surviving path

with the fewest errors appears; This is the path that comes closest

to the incoming sequence. Fig. 17 illustrates the pipeline

processing concept. Table 3 demonstrates the system FPGA

resource use with the pipelined Coding method. By comparing the

pipeline utilization with usual Coding algorithm utilization in

Table 2, it is evident that the pipeline method uses more kit logic

components which increases the system's complexity. Although

the pipeline technique requires more FPGA resources, it still uses

a small resource block from Virtex 6. As indicated by the table,

the number of slice registers and LUTs utilized are 3% and 9%,

respectively. On the other hand, the pipelined processing reduces

the system timing from 24 to 14 clock cycles, resulting in greater

speed. Remarkably, the Pipeline strategy increased the percentage

of entirely LUT-FF pairs (utilization effectiveness) from 55% in

the traditional coding method to 63%. When compared to the

ASIC implementation for the Viterbi decoder in [19], the

proposed pipeline system consumed more FPGA resources.

However, this is normal because this paper provides the pipeline

technique for the encoder and decoder. Additionally, introduce

more LUT-FF pairs for increased efficiency and greater speed.

The pipeline strategy aims to boost design speed. Figure 18

depicts the time report for the normal technique, while Figure 19

depicts the timing report for the pipeline method. According to

reports, the pipeline technique saves time while increasing design

frequency when compared to the two previous figures. The Xilinx

Suite package generates timing data automatically following the

Synthesize procedure at the Xilinx timing closure. Timing closure

is the process of verifying that an FPGA design meets all the

necessary timing restrictions. These constraints establish the

maximum allowable delay between a circuit's input and output,

and they are critical to the design's proper operation.

Figure 17: The Pipeline processing idea

Table 3 The Virtex 6 utilization of pipelined convolutional coding

system

Figure 18: Timing report for the normal method

Figure 19: Timing report for the pipeline method

5. Full System Verification

The complete system is verified by comparing the transmitter

input to the receiver output with the applied channel effect, it is

represented by the AWGN and Rayleigh Channels. The

convolutional encoder input was represented by a sequence of

binary bits. Fig. 20 (a&b) and Fig. 21 depict the Transmitter's

input and the Receiver's output data in MATLAB simulation and

VHDL ISim simulator implementation results, respectively. Both

simulation and implementation results show that the transmitter's

input is the same as the receiver's output. The comprehensive

system verification has completed successfully. Fig. 22 depicts

372

--

the MATLAB command window output for the same input data

stream as VHDL codes. By comparing figures 21 and 22, it is

evident that the findings provided by the MATLAB simulation

are similar to the ISim simulation results.

(a)

(b)

Figure 20: The complete system MATLAB simulation results

 (a) The transmitter input (b) The receiver output

Figure 21: The Full system VHDL ISim simulation results for

convolutional coding

Figure 22: A MATLAB command window for whole system

convolutional coding

6. Conclusion

This article presented the MATLAB simulation and FPGA

implementation of a proposed non-systematic convolutional

system that includes a block interleaver and 64-QAM mapping to

address AWGN and Rayleigh channel effects. The convolutional

code has a rate equal to 1/3, a constraint length of seven, and 63

state transitions. The encoder uses a trellis diagram, while the

decoder employs the Viterbi algorithm with hard decision

decoding. MATLAB simulation was carried out using version

R2023b, and the implementation was done using the Virtex 6

(XC6VLX240T) FPGA kit and VHDL codes from Xilinx

package version 14.7, with simulation results presented using the

ISim simulator. The system's complexity is evaluated based on

FPGA resource usage. A comparison is drawn between FPGA

utilization with and without the pipelining algorithm. The non-

pipelined system demonstrates satisfactory speed and efficient

chip resource utilization, while the pipelining technique balances

speed improvement and complexity through the inclusion of

additional memory and logic components. The performance of the

pipelining approach is dependent on available chip resources and

the desired system timing response.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Attia ME, Kabeel AE, Mohamed A, Abdelkader B, and Moataz MA.

Optimal Sowmya, K. B., D. N. Rahul Raj, and Sandesh Krishna Shetty.

"Error Correction Technique Using Convolution Encoder with Viterbi
Decoder." In Sustainable Communication Networks and Application:

Proceedings of ICSCN 2020, Springer Singapore, pp. 243-252, 2021.

https://doi.org/10.1007/978-981-15-8677-4_20

[2] GodwinPremi, M. S., N. Anusha, S. Kuzhaloli, G. Kumar, and M. Rajmohan.

"FPGA implementation of the convolution coding method for industrial

automation." In AIP Conference Proceedings, AIP Publishing, vol. 2523, no.

1., 2023. https://doi.org/10.1063/5.0110974

[3] Huleihel, Yara, and Haim H. Permuter. "Low PAPR MIMO-OFDM Design

Based on Convolutional Autoencoder." IEEE Transactions on

Communications, 2024. https://doi.org/10.48550/arXiv.2301.05017

[4] Shawqi, Farooq Sijal, Lukman Audah, Mustafa Maad Hamdi, Ahmed Talaat

Hammoodi, Yassin Salih Fayyad, and Alaa Hamid Mohammed. "An
overview of ofdm-uwb 60 ghz system in high order modulation schemes."

In 2020 4th International Symposium on Multidisciplinary Studies and

Innovative Technologies (ISMSIT), pp. 1-6. IEEE,

2020.https://doi.org/10.1109/ISMSIT50672.2020.9255175

[5] Prakash, Varshitha, and M. Ramesh Patnaik. "Design and Implementation of

Convolution Coding Technique in Industrial Automation." In Frontiers in
Intelligent Computing: Theory and Applications: Proceedings of the 7th

International Conference on FICTA (2018), Vol. 2, Springer Singapore,

2020, pp. 92-100. https://doi.org/10.1007/978-981-13-9920-6_10

[6] Gómez-Torrecillas, José, Francisco Javier Lobillo, and Gabriel Navarro.

"Cyclic distances of idempotent convolutional codes." Journal of Symbolic

Computation, 2021, pp. 37-62. https://doi.org/10.1016/j.jsc.2019.10.008

[7] Yaping, S. U. N., D. O. U. Gaoqi, and Y. A. N. Mingliang. "Nested Tail-

Biting Convolutional Codes Construction for Short Packet
Communications." Radioengineering vol. 30, no. 3, 2021. doi:

10.9781/ijimai.2022.01.004

[8] Mohammed, Hasan Fadhil, and Ghanim A. Al-Rubaye. "BER Performance
of Convolutional Coded OFDM System in Different Fading Channels

Scenarios with Exact and Simplified LLR." Webology, vol. 19, no. 1, pp.

6300-6321, 2022. https://www.webology.org/abstract.php?id=1347

373

--

[9] Zhang, Zhengyu, Dongping Yao, Lei Xiong, Bo Ai, and Shuo Guo. "A

convolutional neural network decoder for convolutional codes." In

Communications and Networking: 14th EAI International Conference,

ChinaCom 2019, Shanghai, China, November 29–December 1, 2019,

Proceedings, Part II 14, Springer International Publishing, 2020, pp. 113-

125. https://doi.org/10.1007/978-3-030-41117-6_10

[10] Spasov, Dejan. "A Generalization of the Convolutional Codes." 2020.

http://hdl.handle.net/20.500.12188/8215

[11] RoyChatterjee, S., K. Sur, and M. Chakraborty. "Study on S-box properties
of convolution coder." In Proceedings of International Ethical Hacking

Conference 2019: eHaCON 2019, Kolkata, India, Springer Singapore, 2020,

pp. 119-128. https://doi.org/10.1007/978-981-15-0361-0_9

[12] Lingxiao Zhao. "Comparisons of PSK, APSK, and QAM over AWGN and

fading channels. " ACE, vol. 36 no. 1, pp. 53-63, 2024. DOI: 10.54254/2755-

2721/36/20230423.

[13] Katz, Noam. "CommUnet: U-net decoder for convolutional codes in

communication." arXiv preprint arXiv:2004.10057, 2020.

https://doi.org/10.48550/arXiv.2004.10057

[14] Banerjee, A., Lenz, A., and Wachter-Zeh, A. "Sequential Decoding of

Convolutional Codes for Synchronization Errors. " In 2022 IEEE

Information Theory Workshop (ITW), IEEE. pp. 630-635, November 2022.

https://doi.org/10.48550/arXiv.2201.11935

[15] Zhang, Chen, Guangyu Sun, Zhenman Fang, Peipei Zhou, and Jason Cong.

"Caffeine: Towards uniformed representation and acceleration for deep
convolutional neural networks." In Proceedings of the ACM Turing Award

Celebration Conference-China 2023, pp. 47-48.

https://doi.org/10.1145/3603165.3607390

[16] García Planas, María Isabel, and Laurence Emilie Um. "Convolutional code

theory-based steganography technique." International journal of circuits,

systems and signal processing vol. 16, pp. 811-821, 2022. https://doi.org/

10.46300/9106.2022.16.100

[17] Mohammadidoost, Alireza, and Matin Hashemi. "High-throughput and

memory-efficient parallel viterbi decoder for convolutional codes on GPU."
arXiv preprint arXiv:2011.09337, 2020.

https://doi.org/10.48550/arXiv.2011.09337

[18] Venkatesh, C. "Wave pipelined VLSI architecture for a Viterbi decoder
using self-reset logic with 0.65 nm technology." International Journal of

Applied Science and Engineering vol. 8, no. 1, pp. 65-75, 2021.

https://doi.org/10.6703/IJASE.2010.8(1).65

[19] Bhuvanasri, P., T. Geetha Sai Kumari, Sh Raziya, K. Abhishek, and D.

Vyshnavi. "An Efficient Low Power Architecture for Vertibe Decoder Using

ASIC Application." Journal of Engineering Sciences vol. 14, no. 03, pp. 481-

495, 2023. DOI:10.15433.JES.2023.V14I3.43P.54

[20] Elwazan, Aly AE, Abdelhalim AA Zekry, and Hossam LA Zayed. "Matlab

Code for LTE Convolutional Code and Viterbi Decoder." International
Journal of Engineering Research & Technology (IJERT) vol. 6, no. 3, pp.

578-581, 2017. DOI:10.17577/IJERTV6IS030465

[21] Liao, Jingyi, Kalle Ruttik, Riku Jantti, and Phan-Huy Dinh-Thuy. "Coded
Backscattering Communication with LTE Pilots as Ambient Signal." arXiv

preprint arXiv:2402.12657, 2024.

https://doi.org/10.48550/arXiv.2402.12657

374

