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 Channel coding is essential for ensuring reliable data transmission in challenging wireless 

communications. Improving spectrum efficiency involves leveraging efficient forward error 

correction (FEC) methods. Viterbi decoding plays a critical role in Convolutional channel coding for 

accurate error detection and correction, particularly in LTE and Satellite communication systems. 

This article discusses the simulation and FPGA implementation of a newly proposed non-systematic 

Convolutional system featuring a block interleaver and 64-QAM Mapping under AWGN and 

Rayleigh channel conditions. The system adopts a Convolutional coding rate equal to 1/3 and a 

constraint length of 7, utilizing a Trellis-diagram for encoding and the Viterbi-algorithm for decoding 

with hard decision decoding. Additionally, a pipeline coding approach is employed. Simulations are 

conducted using MATLAB-R2023b, and the implementation is executed on Virtex 6 (XC6VLX240T) 

FPGA using Xilinx 14.7. The study reveals that the pipeline technique demands more FPGA resources 

compared to traditional methods while still utilizing a small resource block from Virtex 6, with 3% 

and 9% usage of slice registers and LUTs, respectively. Moreover, the system's timing is reduced 

from 24 to 14 clock cycles, enhancing the efficiency of entirely LUT-FF pairs from 55% to 63%. 
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1. Introduction  

In modern digital communications systems, particularly in 

satellite communications; 4G and 5G mobile generation, Forward 

Error Correction (FEC) is becoming more well acknowledged for 

its advantages and prospective benefits. As a result, channel 

coding is increasingly important in the design of these systems 

[1]. The primary difficulty with FEC systems usually lies in the 

real development of strong decoders that will work with large 

amounts of information, provide less mistake probability while 

remaining effective and not overly hard to accomplish. The 

difficulty of engineering and producing rapid encoding and 

decoding equipment at the cheapest feasible budget has been 

exacerbated when information rates grow, extending into 

hundreds of several mega-bits for each second (Mbits/s) as well 

as greater. [2-6].  

Convolutional encoding is commonly employed in order to 

encode information through FEC methods. The upcoming 

decoding was carried out via Viterbi decoding. Convolutional 

encoding and Viterbi decoding are especially well-suited for 

wireless channels. The signal being transmitted is primarily 

distorted by additive white Gaussian noise.  Convolutional codes 

are frequently preferred over block codes in practice since they 

were one of the first codes for which algorithms were devised [7-

9]. Block codes accept discrete blocks of k-symbols and output 

blocks of n-symbols that only rely on the k input symbols. 

Convolutional codes are commonly referred to as streaming codes 

because they frequently work on a continuous flow of symbols 

rather than separate messaging chunks. Those have remaining 

rates (R = k/n codes), which accept k fresh symbols at every time 

period and generate n brand-new symbols [10-11]. This research 

introduces a design and implementation of digital communication 

kit, modeling the error detection and repair mechanisms in digital 

data sent by AWGN and Rayleigh. The Rayleigh channel impact 

was considered since fading channels are useful approximations 

of real-world occurrences in wireless communication, and there 

were no burst defects in the AWGN scenario to assess the 

advantages of block interleavers [12]. Gaussian white noise is an 

assortment of additive noise that is typically encountered in 

electrical circuits and has a Gaussian distribution with all 

frequencies in existence. It is characterized by a zero mean and 

variance parameter, which specifies the amount of noise in the 

input. The high speed and pipelining properties of the FPGA 

processor, together with pipeline coding, have been used to reduce 

processing time and hence boost data throughput. Previous studies 

offered some strategies to expedite and increase the error 

detection and repair processing for convolutional coding using 

MATLAB simulation but did not introduce or provide any real-

time implementation strategies. [13–16]. However, the pipeline 

technique has the advantage of introducing more time response 

while maintaining acceptable system complexity and eliminating 

the necessity for mathematical operations reduction. [17] used a 

parallel Viterbi MATLAB simulation of the AWGN channel 

effect. While [18] produced the pipeline VLSI for the Viterbi 

decoder, [19] built another Viterbi decoder architecture 

employing an ASIC application. 

This article provides the MATLAB simulation and FPGA 

implementation of the suggested non-systematic Convolutional 

system with block interleaver and 64-QAM mapping over the 

AWGN and Rayleigh channels impact. The suggested 
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convolutional coding system parameters are equivalent to those 

employed for LTE prior to turbo-coding [20-21]. The 

Convolutional coding rate (k/n = 1/3) and constraint length is (L 

= 7). The encoder applies a trellis diagram, and the decoder 

employs the Viterbi algorithm with hard decision decoding. 

Pipeline implementations for convolutional coding are created, 

and their complexity is evaluated. The simulation was executed 

out using MATLAB (version R2023b). The implementation has 

been carried out making use of the Virtex 6 (XC6VLX240T) 

FPGA kit and VHDL codes. The VHDL codes were written using 

Xilinx package version 14.7. The results of the simulation were 

displayed via the ISim simulator. The originality of this article 

stems from the simulation of a newly proposed system that 

combines a non-systematic convolutional system with a block 

interleaver and 64-QAM mapping, specifically designed for 

operation under AWGN and Rayleigh channel conditions. 

Furthermore, the article includes the FPGA implementation of 

this proposed system, along with a comparison of results obtained 

from both the simulation and the implementation.  The second 

section of the article is headed "The proposed system block 

diagram". Section three illustrates the system's FPGA use, while 

Section four discusses pipeline coding. Section five provides full 

system verification, whereas Section six offers the conclusions.  

2. The Proposed System Block Diagram 

This section offers a proposed block diagram for 

Convolutional Coding. The block diagram includes three phases 

in the transmitter and reverse actions at the receiver. The first 

stage of the transmitter is a convolutional encoder which employs 

a trellis diagram, while the Viterbi algorithm applies in the 

receiver. The second stage is a block interleaver, and the third 

stage is the Mapper. The Mapper output data is sent over the 

AWGN or Rayleigh channel. Fig. 1 illustrates the suggested 

convolutional channel coding block diagram. 

 
Figure 1: Convolutional channel coding block diagram 

2.1. Convolutional coding  

In Convolutional processing, information pieces arrive 

sequentially instead of in huge chunks. The label Convolutional 

description comes from the reality that redundant information is 

produced by modulo-2 convolutions at a convolutional encoder. 

The convolutional encoder can be thought of as a finite-state 

machine that includes an M-stage shift register, modulo-2 

addition machines, and multiplexing devices.  A convolutional 

processor has k entries and n outcomes; hence, its rate equals k/n. 

The makers to convolution-coding circuits frequently define the 

algorithms by employing quantities (n; k; L). An amount L is 

referred to as the code's constraint length, and it reflects the largest 

number of bit values in the single output flow might be impacted 

by any given input bit. Fig. 2 illustrates a non-systematic 

convolution encoder with an execution rate of 1/3. Equations (1, 

2, and 3) can be used to represent the output response stream yi(n) 

of the rate 1/3 linearly convolution encoding.  

y1(n) = x(n) + x(n-1) + x(n-2) + x(n-3) + x(n-6)                       (1) 

y2(n) = x(n) + x(n-2) + x(n-3) + x(n-5) + x(n-6)                       (2) 

y3(n) = x(n) + x(n-1) + x(n-2) + x(n-4) + x(n-6)                       (3) 

Thus, the encoder's binary impulse responses are as follows: 

g1(n) = (1111001), g2(n) = (1011011), and g3(n) = (1110101). 

The constraint length "L" of a convolutional code is equal to the 

total length that defines the longest entry shifting register with the 

maximum number of storage elements in addition to one. m 

indicates the number of memory cells (shift register). Fig. 2 shows 

a rate of 1/3 for the non-systematic convolution encoding, which 

contains six memory cells. With m=6 and L = m + 1 = 7, the 

number of states is 2^m = 2^6 = 63. As a result, the corresponding 

state diagram of the trellis algorithm contains 63 transition states. 

Table 1 displays the state transition diagram for the assumed input 

sequence (1 0 1 0). Fig. 3 depicts the ISim simulation of 

convolutional encoder results when the reset equals zero. The 

memory cells are initialized with zeros and the current state 

(000000). When the reset is equal to one and the clock is high, the 

output sequence carried out as expected from state transitions as 

shown in Table 1. Fig. 4 depicts the convolutional encoder RTL 

schematic. The convolutional decoder by Viterbi algorithm is the 

reverse operations of encoder processing (backward direction on 

trellis). Fig. 5 illustrates the convolutional decoder RTL 

schematic. Fig. 6 depicts the Bit Error Rate (BER) performances 

of the convolutional encoder and decoder over the AWGN and 

Rayleigh channels performed with a hard decision. The chart 

additionally demonstrates the improvement in BER caused by 

Convolutional coding versus an un-coded system.  

 

Figure 2: Rate 1/3 of the non-systematic Convolutional Encoder 

Table 1: The state transitions diagram for assuming input sequence 

(1 0 1 0)  
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Figure 3: The ISim simulation of Convolutional Encoder results 

 
Figure 4: The RTL Schematic of Convolutional Encoder 

 
Figure 5: The Convolutional Decoder RTL Schematic  

 

Figure 6: The BER performance of Convolutional Coding through 

an AWGN and Rayleigh channels simulated via MATLAB 

simulation 

2.2. Interleaver 

A block interleaver takes a set of symbols and rearranges 

them so that none of the symbols are repeated or omitted. For each 

particular interleaver, the number of symbols in each set remains 

constant. The convolutional interleaver is a data reordering 

technique that distributes bursts of mistakes and improves the 

efficiency of FEC algorithms in the presence of dropouts. The 

BER performance of convolutional can be considerably enhanced 

by using interleavers since they change the spacing attributes of 

the code through preventing low-weight code words. Block 

interleavers are an increasingly common type of interleaver in 

communication-systems. It populates the array by streaming the 

incoming information bit row by row before sending out the 

information column by column. Fig. 7 depicts a block interleaver 

the inputs are [01 … 100 … 1...… 0 …100 … 1] and the output 

is [00 … 00 … 1 … 0 … 1 … 01 … 1 1]. 

 

Figure 7: Block Interleaver write read ranking  

The goal of bit-based interleaving is to optimize a system's 

diversity order while scattering burst faults caused by associated 

fading channels. Make the bit in relation to the transmission 

symbol not correlated or independent of one another. Fig. 8 

demonstrates block interleaver operation. Fig. 9 displays the 

MATLAB results of the interleaver output with the entry from the 

Convolutional-Encoder output. The data that is entered (111 101 

000 011) is the encoder trellis algorithm output, whereas the 

output of the Block Interleaver is (1100 1001 1101). Fig. 10 

depicts the VHDL ISim simulation results of the block interleaver. 

As demonstrated in the figures, the ISim simulation findings are 

similar to the MATLAB simulation outcomes. 

 

Figure 8: Block Interleaver operation 

 

Figure 9: The block interleaver results by MATLAB command 

window 
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Figure 10: The ISim simulation results of block interleaver 

2.3. Mapper 

The Mapper with type M-QAM (M=64) is represented by 

the digital modulation constellation diagram. The Baseband 

symbols assign the outcome data acquired from the block 

interleaver to the Mapper input. That involves the I and Q 

components. The in-phase component is denoted as I, whereas the 

quadrature component is represented by Q.  Fig. 11 illustrates the 

binary scatter plot. Fig. 12 displays the constellation diagram for 

the 64-QAM Mapper. Fig. 13 demonstrates the results of the DE-

Mapper block's MATLAB simulation. While Fig. 14 displays the 

VHDL implementation Mapper RTL Schematic, (data_out) 

denoted the concatenated real and imaginary mapped data. Fig. 15 

depicts the ISim simulator mapping results with the input 

sequence (1100 1001 1101) representing the preceding stage's 

output data (block Interleaver). 

 

Figure 11: The scatter plot for the 64-QAM Mapper  

 

Figure 12: The binary constellation diagram for the 64-QAM 

Mapper 

Figure 13: Simulation results for the DE-Mapper block 

 

Figure 14: The RTL Schematic for Mapper  

 

Figure 15: Mapping findings from the ISim simulator  

3. FPGA UTILIZATION 

The real-time implementation in this section is accomplished 

using the Virtex 6 (XC6VLX240T) FPGA kit. Fig. 16 illustrates 

an FPGA kit in usage. Table 2 illustrates the Virtex 6's overall 

system resource utilization. It is evident that the proposed 

convolutional coding technique makes use of only a fraction of 

Virtex 6's resource blocks. As seen in the table, the amount of 

used slice registers and look-up tables (LUTs) are extremely low, 

at 1% and 2%, respectively. There are a large number of totally 

LUT-FF pairs (55% utilization efficiency). 

 

 

Figure 16. FPGA Kit for Virtex 6 (XC6VLX240T) 
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Table 2: The Virtex 6 whole system utilization 

 

4. Pipeline Coding 

The Trellis diagram performs convolution coding at the 

transmitter, and the same diagram, with 63 transition states in this 

suggested system scenario, is carried out at the receiver in a back-

direction process known as the Viterbi Decoding method. In this 

section, the Encoding Diagram and Decoding Viterbi algorithm 

operations are performed using pipeline processing. The Viterbi 

algorithm works by following a coded-sequence {s0, s1, ...} or its 

signal-mapped counterpart {x0, x1, ...}, which equivalent to the 

path across the encoder-trellis. As a result of channel noise, the 

receiving sequence r might not have been perfectly equivalent to 

the path across a trellis. The algorithm for decoding identifies the 

path across the trellis that is most similar to the incoming 

sequence, where nearest is measured using the probability 

functioning proper for the channel. In context of the usual 

procedure, the next decoding phase operation does not begin until 

all of the previous path operations have been completed. As a 

result, this behavior, which might occur in the regular Viterbi 

decoding method, requires a long processing time. The pipelined 

method is an effective solution for the preceding problem since 

each clock initiates a new phase of the decoding procedure.  At 

the end of the algorithm's clock cycles, the final surviving path 

with the fewest errors appears; This is the path that comes closest 

to the incoming sequence.  Fig. 17 illustrates the pipeline 

processing concept. Table 3 demonstrates the system FPGA 

resource use with the pipelined Coding method. By comparing the 

pipeline utilization with usual Coding algorithm utilization in 

Table 2, it is evident that the pipeline method uses more kit logic 

components which increases the system's complexity. Although 

the pipeline technique requires more FPGA resources, it still uses 

a small resource block from Virtex 6. As indicated by the table, 

the number of slice registers and LUTs utilized are 3% and 9%, 

respectively. On the other hand, the pipelined processing reduces 

the system timing from 24 to 14 clock cycles, resulting in greater 

speed. Remarkably, the Pipeline strategy increased the percentage 

of entirely LUT-FF pairs (utilization effectiveness) from 55% in 

the traditional coding method to 63%. When compared to the 

ASIC implementation for the Viterbi decoder in [19], the 

proposed pipeline system consumed more FPGA resources. 

However, this is normal because this paper provides the pipeline 

technique for the encoder and decoder. Additionally, introduce 

more LUT-FF pairs for increased efficiency and greater speed. 

The pipeline strategy aims to boost design speed. Figure 18 

depicts the time report for the normal technique, while Figure 19 

depicts the timing report for the pipeline method. According to 

reports, the pipeline technique saves time while increasing design 

frequency when compared to the two previous figures. The Xilinx 

Suite package generates timing data automatically following the 

Synthesize procedure at the Xilinx timing closure. Timing closure 

is the process of verifying that an FPGA design meets all the 

necessary timing restrictions. These constraints establish the 

maximum allowable delay between a circuit's input and output, 

and they are critical to the design's proper operation. 

 

Figure 17: The Pipeline processing idea  

Table 3 The Virtex 6 utilization of pipelined convolutional coding 

system  

 

 

Figure 18: Timing report for the normal method 

 

Figure 19: Timing report for the pipeline method 

5. Full System Verification 

The complete system is verified by comparing the transmitter 

input to the receiver output with the applied channel effect, it is 

represented by the AWGN and Rayleigh Channels. The 

convolutional encoder input was represented by a sequence of 

binary bits. Fig. 20 (a&b) and Fig. 21 depict the Transmitter's 

input and the Receiver's output data in MATLAB simulation and 

VHDL ISim simulator implementation results, respectively. Both 

simulation and implementation results show that the transmitter's 

input is the same as the receiver's output. The comprehensive 

system verification has completed successfully. Fig. 22 depicts 
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the MATLAB command window output for the same input data 

stream as VHDL codes. By comparing figures 21 and 22, it is 

evident that the findings provided by the MATLAB simulation 

are similar to the ISim simulation results. 

 
(a) 

 
(b) 

Figure 20: The complete system MATLAB simulation results 

 (a) The transmitter input (b) The receiver output 

 

Figure 21: The Full system VHDL ISim simulation results for 

convolutional coding 

 

Figure 22: A MATLAB command window for whole system 

convolutional coding 

 

6. Conclusion 

This article presented the MATLAB simulation and FPGA 

implementation of a proposed non-systematic convolutional 

system that includes a block interleaver and 64-QAM mapping to 

address AWGN and Rayleigh channel effects. The convolutional 

code has a rate equal to 1/3, a constraint length of seven, and 63 

state transitions. The encoder uses a trellis diagram, while the 

decoder employs the Viterbi algorithm with hard decision 

decoding. MATLAB simulation was carried out using version 

R2023b, and the implementation was done using the Virtex 6 

(XC6VLX240T) FPGA kit and VHDL codes from Xilinx 

package version 14.7, with simulation results presented using the 

ISim simulator. The system's complexity is evaluated based on 

FPGA resource usage. A comparison is drawn between FPGA 

utilization with and without the pipelining algorithm. The non-

pipelined system demonstrates satisfactory speed and efficient 

chip resource utilization, while the pipelining technique balances 

speed improvement and complexity through the inclusion of 

additional memory and logic components. The performance of the 

pipelining approach is dependent on available chip resources and 

the desired system timing response. 
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