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 Software-defined networking (SDN) significantly enhances network management through its 

centralized controller, which operates independently of forwarding devices. However, SDN security 

remains a major challenge. It inherits vulnerabilities from traditional networks due to shared 

protocols and introduces new risks from its reliance on software-based systems. Dynamic Host 

Configuration Protocol (DHCP), a critical protocol in SDNs, also presents security threats. This 

study analyzes the impact of the stealth DHCP starvation attack in an SDN environment where the 

Open Network Operating System (ONOS) controller acts as a DHCP relay agent. The analysis 

reveals that this configuration is susceptible to stealth DHCP starvation attacks, which can disrupt 

network functionality. A Python script is developed and deployed on the DHCP server Virtual 

Machine (VM) to address this vulnerability. The script effectively prevents harmful DHCP 

messages, restores the IP address pool, and mitigates DHCP-related attacks without imposing 

significant system overhead. Results demonstrate that the proposed solution not only enhances 

network resilience against attacks, but also improves overall performance. Specifically, it increases 

the throughput from 66.0 Mbits/sec to 101.5 Mbits/sec, while the average Round Trip Time (RTT) 

is reduced from 455.0 ms to 0.45 ms. Additionally, the transmission rate improves from 46,800 

Packet Per Second (pps) to 72,000 pps, ensuring better resource utilization. The proposed approach 

provides a practical and efficient method for safeguarding SDN environments against advanced 

DHCP-related threats, contributing to the secure and efficient operation of modern networks. 
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1. Introduction  

The expansion of online communication necessitates 

innovative approaches in communication system technology to 

achieve optimization of resource use and support efficient 

scaling. The SDN model decouples the control plane from the 

data plane, shifting network administration tasks from hardware 

devices to centralized software controllers. The controller 

manages the network state and determines how data moves 

through basic network devices. As a result, the SDN controller is 

fundamental to the SDN architecture, and any breach of its 

security threatens the entire network's safety. Security in SDN is 

a complex challenge. It inherits vulnerabilities from traditional 

networks via shared protocols and introduces new issues related 

to software-based risks. The DHCP is crucial for SDNs, but its 

security vulnerabilities also threaten these networks. 
The DHCP obtains network configuration settings, such as IP 

addresses, from a DHCP server. However, it is susceptible to a 

Denial-of-Service (DoS) attack known as the classical DHCP 

starvation attacks. In these attacks, a malicious client sends 

numerous IP requests using spoofed MAC addresses. Each time 

the server receives one of these requests, it allocates a new IP 

address, ultimately leading to the depletion of available 

addresses on the DHCP server. In this paper, A stealth DHCP 

starvation attack, which differs from the classical attack, is 

examined. This attack takes advantage of the IP address conflict 

detection mechanisms present in all DHCP clients. It is 

particularly stealthy, as many common security features found in 

modern network switches are unable to detect it. Furthermore, 

other suggested approaches that fall into one of three categories: 

encryption, threshold-based, or fair IP address allocation, have 

several shortcomings, including high misclassification rates, 

difficult threshold-setting processes in threshold-based 

mechanisms, and the impossibility of allocating IP addresses to 

every port in wireless networks. 

Specifically, the paper provides the following contributions: 

• A stealthy DHCP starvation attack, that is simple to execute 

and hard to detect using existing security measures, is 

introduced. 

• The effectiveness of the proposed DHCP starvation attack is 

evaluated in an SDN network where the ONOS controller acts 

as a DHCP relay agent. 

• A Python script is created on the DHCP server VM to detect 

and block stealth DHCP attacks and remove the malicious 

hosts from the network. 

• The effectiveness of the proposed mitigation strategy is 

assessed, demonstrating significant improvements in the 
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throughput (from 66.0 Mbits/sec to 101.5 Mbits/sec) and 

reducing RTT (from 455.0 ms to 0.45 ms), among other 

performance gains.  

This paper is structured as outlined below: Section 1 is the 

Introduction. Section 2 offers a brief review of recent research on 

SDN and an overview of the Dynamic Host Configuration 

Protocol service and DHCP attacks. Section 3 discusses the 

Stealth DHCP attack and how to detect and prevent it. Section 4 

evaluates the robustness of SDN controllers and DHCP Servers 

through anti-attack tests. Finally, Section 5 concludes the work 

by summarizing the findings and proposing future research topics. 

Research Significant 

A series of tests were conducted to examine the impact of 

shrinkage inhibitors (SIA) on the mechanical characteristics of 

both fresh and hardened self-compacting concrete. To achieve 

this objective, a total of twenty-five distinct concrete mixtures 

were produced and examined, each including various 

combinations of concrete additives. This experimental program 

investigated the impact of using various types of cement, 

specifically high-range water-reducing and retarding types, with 

two different contents of supplementary cementitious materials, 

as well as the inclusion of silica fume, on the properties of both 

fresh and hardened concrete. Significant findings were derived 

from conducting several tests on fresh and hardened concrete 

mixtures. 

2. Related Works 

2.1. The DHCP 

The DHCP protocol allows TCP/IP configurations to be 

managed centrally, efficiently handling network changes. 

Manually assigning IP addresses and other network settings (such 

as the default gateway and DNS server IP addresses) to each 

device on a network can be time-consuming and error-prone. For 

example, there's a risk of IP address conflicts if the same address 

is accidentally assigned to multiple devices. Because of these 

challenges, most networks today have one or more DHCP servers. 

The DHCP servers automatically assign IP addresses to devices 

without conflict. A DHCP server is set up with a range of IP 

addresses and additional network settings. When a client joins a 

network, it attempts to configure its interface with an IP address 

by exchanging four messages with the DHCP server, as 

illustrated in Figure 1. These messages are DISCOVER, OFFER, 

REQUEST, and ACKNOWLEDGMENT (ACK), forming the 

(Discover, Offer, Request, and Acknowledge) (DORA) process 

for IP address allocation. Additionally, there are other message 

types exchanged if the IP address configuration is unsuccessful. 

One example is the DHCPDECLINE message, which the client 

sends to the DHCP server if it detects that the assigned IP address 

is already being used by another client. To identify these conflicts, 

a DHCP-enabled client uses ARP request probes to verify 

whether the IP address is currently in use. 

 
Figure 1: DHCP DORA Process 

2.2. The DHCP Attacks 

Understanding the types of DHCP attacks is crucial for 

developing detection and mitigation strategies. 

• The DHCP Starvation Attack: The attacker floods the network 

with DHCP requests, consuming all available IP addresses. 

Legitimate devices cannot obtain an IP address, leading to a 

denial of service. 

• The DHCP Spoofing Attack: To respond to client’s DHCP 

queries, the malicious client uses an illegal DHCP server, 

providing them with information about DNS servers, default 

gateways, and fake IP addresses. By delivering these incorrect 

settings, the attacker is capable of executing man-in-the-

middle (MITM) attacks, redirecting clients to harmful 

websites, or infecting their systems with malware. 

2.3. Detection and Mitigation Techniques for DHCP attacks. 

The DHCP protocol is inherently insecure and vulnerable to 

DoS attacks, such as DHCP starvation. The proposed detection 

method, which is based on port scanning, proved to be highly 

effective in identifying DHCP starvation attacks on both local 

and remote DHCP networks. However, it cannot detect a host 

that blocks all TCP ports. Furthermore, scanning 1000 TCP ports 

for each IP address requires a considerable amount of time [1]. 

A paper [2] introduces another solution to detect and prevent 

DHCP starvation attacks as well as to address the shortcomings 

of traditional port security techniques. The proposed solution 

includes a detailed algorithm for a fair IP address allocation 

strategy across ports on a network edge switch. Additionally, the 

solution is applied to both wired and wireless networks. 

Simulation results indicate that the approach significantly 

outperforms methods like fixed IP allocation per port and 

malicious DHCP request rate detection. 

Also, authors in [3] introduce a stealth starvation attack that is 

very efficient in wireless networks, simple to execute, needing 

less transmitted messages, and challenging to detect using 

existing methods. Additionally, a structurally comparable attack 

targeting IPv6 networks is demonstrated, which could disrupt 

address configuration protocols such as DHCPv6 and State-less 

Address Auto-configuration (SLAAC). Authors further explain a 

method for detecting anomalies to detect this attack. An actual 

network environment was used to design and test the attack, and 

the results were documented. The proposed detection method 

leverages the Hellinger distance between two probability 

distributions derived from training and testing data to identify the 

starvation attack. 

2



 
 

 

 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

Authors, in [4], evaluate whether the suggested attack is 

effective in IPv4 and IPv6 networks, demonstrating that it can 

effectively stop other clients from acquiring IP addresses, which 

would lead to a DoS scenario. They counteract this threat by 

proposing an anomaly detection framework based on Machine 

Learning (ML). Specifically, they utilize well-known one-class 

classifiers for detection. By capturing IPv4 and IPv6 traffic from 

an actual network consisting of several devices, they assess the 

performance of various ML algorithms. According to their tests, 

these algorithms are highly accurate at detecting attacks in both 

IPv4 and IPv6 environments. 

A study [5] seeks to create an effective solution for detecting 
and automatically neutralizing rogue DHCP servers using a 
Python-powered detection system. It begins by illustrating a 
MITM attack and its consequences through the deployment of a 
rogue DHCP server. Following this, the research presents a 
Python-based engine capable of identifying and neutralizing 
rogue DHCP servers by differentiating them from legitimate ones 
through a comparison of whitelisted IPs and their corresponding 
MAC addresses. Lastly, the proposed method's effectiveness is 
demonstrated and validated using Multivendor Network 
Emulation Software. 

A study [6] examines the primary vulnerabilities of the DHCP 

protocol, such as its absence of authentication, confidentiality, 

and integrity, which make it susceptible to various attacks. These 

include rogue DHCP server attacks, DHCP starvation attacks, 

and replay attacks. Additionally, the research evaluates the 

strategies proposed to detect and prevent these threats, providing 

a detailed analysis of their benefits and limitations. 

2.4. The SDN 

The SDN has improved the networking industry by solving 
issues related to scalability, flexibility, and control mechanisms 
that are common in conventional networks. A major advantage of 
SDN compared to traditional networks is its centralized 
management. Traditional networks lack a separate control layer, 
making network configuration and management difficult. The 
SDN introduces a distinct control layer, simplifying network 
management and making it more efficient. Network management 
is now more flexible and less reliant on costly hardware and 
configuration changes. This benefits not only network 
administrators but also potential network intruders. The SDN 
separates the control and data planes of the network, but the 
separation of the control plane can create a single point of failure 
if targeted by DoS or Distributed DoS (DDoS) attacks. 
Consequently, security is a critical concern for the SDN. 

A paper [7] discusses the security challenges across all three 

layers of the SDN and outlines the solutions that network 

administrators should implement. It highlights several key 

benefits of the SDN security which continues to be a prominent 

topic in networking. The primary objective of this paper is to 

review the significant advancements in the SDN security, along 

with their scope and limitations. 

A study [8] examines the security of built-in DHCP services 

on three widely used SDN controllers: POX, ONOS, and 

Floodlight. The findings reveal that these controllers are 

susceptible to starvation attacks, and floods of DHCP discovery 

messages can be exploited to launch denial-of-service (DoS) 

attacks, causing network slowdowns and overloading the 

controllers. To address these vulnerabilities, the researchers 

evaluated advanced DHCP security methods and their application 

to the DHCP servers embedded in SDN controllers. Based on 

their analysis, they developed and implemented a DHCP security 

Guard, on the POX controller, incorporating features such as 

DHCP snooping, rate limiting, and IP pool recovery. 

The controller serves as the "brain" of SDN technology, 

driving its intelligent functionality. Different SDN controllers 

have been developed to meet the varied demands and tasks 

required of them. While many commercial SDN controllers exist, 

there are also numerous open-source options available. Among 

these, the ONOS has emerged as a prominent trend in open-

source SDN solutions. A paper [9] conducts a comparative 

analysis of open-source SDN controllers, including Network 

Controller Platform (NOX), Python-based Network Controller 

(POX), the component-based SDN framework (Ryu), the Java-

based OpenFlow controller (Floodlight), Open Day Light (ODL), 

and ONOS. The discussion delves into the architecture and 

evolution of ONOS controllers and examines their use cases 

across various applications. 

A paper [10] aims to compare the performance of two SDN 

controllers, ODL and ONOS, based on their efficiency. The 

study utilizes Mininet to simulate switching and end devices, 

alongside tools like Wireshark Packet Analyzer and iperf, which 

monitor real-time traffic flow between Mininet and the 

controller. The performance of an SDN controller is a critical 

factor in determining how effectively it functions in a network, 

and various metrics are used to evaluate this performance. The 

analysis reveals that ONOS outperforms ODL in terms of 

throughput, TCP window scaling, TCP/UDP bandwidth, burst 

rate, jitter, goodput, TCP Stevens Graph, RTT, and overall 

usability. This study provides valuable insights into the 

performance capabilities of ONOS and ODL, particularly in 

medium-to-large-scale SDN networks.  

A paper [11] explores the control plane architectures and 

examines various SDN controllers that support them. The authors 

evaluated SDN controllers based on key performance metrics, 

including scalability, reliability, consistency, and security. 

Additionally, they analyzed the mechanisms employed by these 

controllers to address these metrics, highlighting the advantages 

and disadvantages of each approach. Furthermore, the manuscript 

identifies several research challenges and open issues related to 

different SDN control plane architectures. 

3. Methodology  

This part introduces the stealth DHCP starvation attacks and 

how to detect and prevent them in SDN networks. 
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3.1. Stealth DHCP Starvation attack  

As shown in Figure 2, the steps of executing a stealth DHCP 

starvation attack on an IPv4 network are as follows: 

• IP address is assigned manually by an illegal host: When an 

illegal host connects to the network, it disables the DHCP 

service running in the background and manually assigns itself 

an IP address along with other configuration details. This 

prevents the DHCP server from assigning an IP to the 

malicious client. It keeps its IP-MAC binding out of the 

server’s DHCP database. This tactic allows the malicious 

client to evade the Dynamic ARP Inspection (DAI) security 

feature, which relies on the DHCP snooping database to detect 

discrepancies in IP-MAC bindings. 

• A victim client connects to the network and acquires an IP 

address from the DHCP server through the DORA process. 

Once the allocation is successful, the DHCP server records the 

IP-MAC binding for the victim client in its database. 

• Victim’s ARP request broadcast: The victim client sends a 

broadcast ARP request to confirm whether the assigned IP is 

currently being used. At this stage, the victim’s source IP is set 

to “0.0.0.0” since it hasn’t configured its network interface 

with the assigned IP yet. 

• Malicious client’s ARP request broadcast: Upon receiving the 

victim’s ARP request, the malicious client broadcasts its own 

ARP request. The malicious request uses a source IP of 

“0.0.0.0,” the target IP as the assigned IP being probed, a 

target MAC of “00:00:00:00:00:00,” and a broadcast 

destination MAC of “ff:ff:ff:ff:ff:ff.” The source MAC in the 

Ethernet header is the malicious client’s MAC. 

• Victim’s decline message: After detecting the malicious ARP 

response, the victim client broadcasts a DHCPDECLINE 

message to the DHCP server, rejecting the assigned IP address. 

The DHCP server then marks this IP as unavailable for the 

duration of the lease period. The victim client restarts the 

process of acquiring an IP address, but this cycle repeats, 

preventing the victim from obtaining a valid IP. Over time, the 

DHCP server runs out of available IPs, causing a DoS attack 

since all declined IPs remain unusable for their lease duration. 

 

Figure 2: Stealth DHCP attack Process [4] 

3.2. The ONOS  

• The ONOS is an open-source SDN controller written in Java, 

designed to work seamlessly across various platforms such as 

Linux, Windows, and macOS. It includes a web-based GUI 

and it can be deployed with cluster support in Docker 

containers. Targeting carrier networks, the ONOS adopts a 

distributed architecture to ensure high availability and 

scalability. It empowers large networks by facilitating the 

integration of new SDN services alongside their existing 

functionalities. Unlike other controllers, the ONOS supports 

hybrid network environments [12]. 

• The ONOS includes a built-in DHCP application, and the 

configuration of the DHCP server is done using a JSON file. 

To activate the DHCP service, the DHCP server application 

must be loaded onto the controller through either the GUI or 

CLI. Afterward, the onos-netcfg binary needs to be executed, 

specifying the controller's IP address and the JSON file's 

directory as parameters 

• In present architecture, the ONOS SDN controller is not used 

as a DHCP server. It is used as a DHCP relay agent. The 

DHCP relay application is activated through the GUI. Then, 

the onos-netcfg file is edited, specifying the DHCP server’s IP.  

• Using the ONOS, as a DHCP relay agent, allows it to block 

rogue DHCP messages before they reach clients. If a DHCP 

response comes from an unauthorized source, this source is 

blocked by the ONOS blocks by applying the flow rules. This 

ensures that only the authorized DHCP server (my DHCP VM) 

provides IP addresses. 

• The forward mode and other applications in the ONOS 

application are also activated as shown in Figure 3. 

3.3. MININET 

Mininet is a powerful, open-source network emulator for 

creating, testing, and prototyping SDNs and other network 

architectures. It allows developers and researchers to create 

virtual network environments on a single machine, making it 

easy to experiment with network configurations and protocols 

without requiring physical hardware. 

 
Figure 3: The ONOS active applications 
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• Mininet can emulate a full network with hosts, switches, links, 

and controllers running as lightweight processes or virtual 

machines on a single computer. 

• It supports large-scale network topologies, making it suitable 

for simulating complex networks while keeping resource 

usage minimal. 

• It integrates seamlessly with SDN controllers (e.g., ODL, Ryu, 

ONOS), making it a popular choice for SDN research and 

development.  

3.4. Principle of the defensive strategy 

• The approach should guarantee that the DHCP server handles 

service requests from authorized hosts accurately and without 

interruption. It is essential to identify what constitutes an 

attack and determine the traffic patterns and threshold values 

that need monitoring. 

• The solution must identify the DHCP attack before it disrupts 

the network communication and causes the DHCP server to 

become unavailable. 

• To stop malicious traffic from flowing over the network, the 

solution must separate the attacker from the network, block the 

attack at the point nearest to its source, and repair any harm 

the assault has caused to the DHCP  server and network 

architecture. 

The DHCP security solution aims to accomplish these 

objectives. This is compatible with other SDN controllers that 

use the same protection logic, regardless of the network 

topology or complexity. It imposes no processing load that 

could affect controller performance. It also offers rapid IP 

pool restoration to improve DHCP server uptime. 

3.5. The architecture design  

The proposed design consists of 4 VMs: 

• The ONOS SDN controller, which controls traffic and in the 

present scenario, it works as a DHCP relay agent. 

• Mininet VM  

• DHCP server VM 

• Hacking VM  

Table 1 lists every element that has been used in our 

virtual lab. 

Table 1: The present virtual lab components  
VM VM Specification Operating System RAM Core 

ONOS Ubuntu 18.04.6 4 1 

Mininet Mininet 22.04 4 1 

DHCP Server Ubuntu 22.04 4 1 

Hacker Ubuntu 20.04 4 1 

 

 

 

 

3.6. Effectiveness of the Stealth DHCP attack on the QOS   

In this section, the effects of the stealth DHCP starvation 

attack on the performance of the network is tested. A tree 

topology on the Mininet VM is designed and connected to the 

ONOS SDN controller. The performance of this network is 

tested during the attack to: 

• Determine if the hosts can obtain IPs from the DHCP server. 

• Execute a Python script on H7 which functions as the attacker. 

After that, H5 and H6 are rebooted to verify whether they can 

obtain an IP address from the DHCP server. Finally, the 

impact of the attack on network performance is assessed. 

• The RTT is measured using ICMP messages between H3 and 

H16. About 1000 messages are sent and the RTT is assessed. 

• The throughput is measured using Wireshark. 

• For bandwidth measurements, iperf is utilized. 

Next, a detection script on H1 is executed and a check 

whether H5 and H6 can regain IP addresses is done. Then, the 

performance measurements is repeated to compare the network's 

performance during the attack and after detection. 

4. Experiments and performance evaluation  

We assign a static IP address to each ONOS SDN controller, 

Mininet VM, hacking VM, and DHCP server VM, as in Table 2. 

Table 2: The IP addresses of the virtual lab components 
VM  IP Address 

ONOS 192.168.1.100 

Mininet 192.168.1.30 

DHCP Server 192.168.1.150 

Hacker 192.168.1.20 
 

4.1. Testing connectivity between Mininet and ONOS 

A basic tree topology is set up in Mininet and connected to 

the ONOS SDN controller, as shown in Figure 4. The Mininet 

hosts obtained IP addresses from the Mininet pool. 

 
Figure 4: Command to create a simple tree topology. 

Figure 5 demonstrates the structure of this tree topology. The 

ONOS SDN controller is connected to the Mininet hosts. All 

Mininet hosts take IP from the Mininet pool “10.x.x.x/8”. By 

default, Mininet assigns hard-coded 10.0.0.0/8 range of IP 

addresses to Mininet hosts. 
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Figure 5: Simple tree topology 

4.2. Ensuring that Mininet hosts can take IP addresses from the 

external DHCP server 

The DHCP pool range is set up from "192.168.1.180/24" to 

"192.168.1.200/24". A Python script is executed on the Mininet 

VM to create a simple topology, connecting it to the ONOS 

SDN controller. This setup allows Mininet hosts to obtain IP 

addresses from our external DHCP server. As shown in Figure 6, 

the Mininet hosts can connect to the external DHCP server and 

retrieve IP addresses from its pool. 

 
Figure 6: Hosts (h1 and h2) can access DHCP server 

4.3. Executing the hacking code on the Hacking VM 

A Python hacking script is executed on a designated virtual 

machine, which captures ARP requests with a source IP of 

0.0.0.0. The script modifies the source MAC address, replacing 

it with a new one, and rebroadcasts the altered ARP request. As 

a result, the victim client sends a DHCPDECLINE message to 

the DHCP server, rejecting the assigned IP address. The DHCP 

server marks the declined IP as unavailable for its lease. The 

victim client then retries the IP acquisition process, but the cycle 

repeats, preventing it from obtaining a valid IP. Over time, the 

DHCP server exhausts its pool of available IPs, leading to a DoS 

attack as all declined IPs remain unusable for the lease period. 

Figure 7 shows the hacker's flowchart and Figure 8 shows the 

code running result. The hacking algorithm is as follows: 

If the packet is an ARP request: 

If the source IP is “0.0.0.0”: 

Replace the source MAC address with a new one 

Rebroadcast the modified ARP request 

Else: 

Drop the packet 

End 

Else: 

Drop the packet 

End 

 

Figure 7: Hacking flow chart 

 
Figure 8: Hackers (h1 and h2) cannot take IP 

4.4. Evaluating the performance of the Python defense code 

Before running the detection code on the DHCP server VM, 

the following prerequisites should be met: install the necessary 

tools, including iptables (for managing network traffic), 

tcpdump (for capturing and analyzing network packets), and 

arptables (for filtering ARP packets). The detection algorithm is: 

If the packet is a discovery message: 

Process the packet 

Else 

If the packet an ARP request with IP {0.0.0.0}: 

If there is discovery message for the MAC address: 

Process the packet 

Else 

Drop the packet 

End 

Else: 

Drop the packet 

End 

End 

Figure 9 shows the detection and prevention flowchart and 

Figure 10 shows the result of running the code. 
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Figure 9: Detection & prevention flow chart 

 The Python detection script generates a file to store the MAC 

address table and discovery messages. It then adds MAC 

addresses and discovery messages to the table while filtering 

ARP Probe Requests originating from the IP address "0.0.0.0". 

The script checks whether a discovery message exists for the 

given MAC address. If a discovery message is found, the 

message is processed; if not, the packet is dropped using iptables, 

and the source port is blocked. Additionally, the system blocks 

network traffic from suspicious MAC addresses or based on 

specific port activity. The outcome of running this script on the 

DHCP server is given in Figure 10 showing that H1 and H2 can 

successfully obtain IP addresses from the DHCP server. 

 
Figure 10: Hosts (h1 and h2) can obtain IPs after running the 

detection and prevention code 

4.5. Evaluating the network performance under the attack and 

after mitigation  

This section demonstrates the effect of stealth DHCP 

starvation attack on Quality of Service (QoS). A tree topology is 

created in Mininet with a fanout of 4 and a depth of 2, 

connecting it to the ONOS SDN controller. Host H1 is 

configured as the DHCP server, with a DHCP pool ranging from 

"192.168.1.75/24" to "192.168.1.95/24", a default gateway of 

"192.168.1.1", and a DNS server set to "8.8.8.8". Static IPs are 

assigned to H1 ("192.168.1.50") and H7 ("192.168.1.15"), while 

the remaining hosts receive their IP addresses dynamically from 

the H1 DHCP server. The Mininet script is executed to configure 

this setup, as shown in Figure 11, H1 uses the static IP and H2 

receives an IP from the DHCP server. 

 
Figure 11: Creating topology 

The hacking code is executed on H7. Then, H5 and H6 are 

rebooted to observe whether they can obtain an IP from the 

DHCP server. Figure 12 shows that they are unable to acquire an 

IP. Thus, the impact of the attack on network functionality and 

performance can be evaluated. The RTT is measured by sending 

approximately 1000 ICMP messages between H2 and H16. 

Additionally, the iperf is used to measure the bandwidth 

utilization, and also both Goodput and Throughput are measured. 

Next, the detection script is executed on H1. Once H5 and H6 

are confirmed to be able to obtain IP addresses, the same 

network performance tests conducted in the previous section are 

repeated. This allows to compare the network performance 

before and after the mitigation of the attack. The results are 

presented in Table 3.  

The results demonstrate that the proposed solution not only 

enhances network resilience against attacks, but also improves 

the overall performance. Specifically, it increases the throughput 

from 66.0 Mbits/sec to 101.5 Mbits/sec, while the average RTT 

is reduced from 455.0 ms to 0.45 ms. Additionally, the 

transmission rate improves from 46,800 pps to 72,000 pps, 

ensuring better resource utilization 

 
Figure 12: H5 and H6 after running the hacking code 
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Table 3: Performance comparison before & after mitigation 

Metric Under Attack After Mitigation 

Max Transmission Rate 48,750 pps 75,000 pps 

Min Transmission Rate 44,200 pps 68,000 pps 

Average Transmission Rate 46,800 pps 72,000 pps 

Max Throughput 67.0 Mbits/sec 103.0 Mbits/sec 

Min Throughput 65.6 Mbits/sec 101.0 Mbits/sec 

Average Throughput 66.0 Mbits/sec 101.5 Mbits/sec 

Max Goodput 63.7 Mbits/sec 98.0 Mbits/sec 

Min Goodput 62.1 Mbits/sec 95.5 Mbits/sec 

Average Goodput 63.2 Mbits/sec 97.2 Mbits/sec 

Min RTT 135.0 ms 0.033 ms 

Max RTT 730.0 ms 22.57 ms 

Average RTT 455.0 ms 0.45 ms 

5. Conclusions 

The SDN has improved the network management by 

separating the control and data planes. However, while SDN 

infrastructure relies on some fundamental protocols that are 

likely utilized in conventional networks for client-server 

communication, many of these protocols have built-in flaws. 

Efforts to counteract these vulnerabilities have shown varying 

degrees of success. The SDN offers an ideal framework for 

developing innovative and practical solutions to address these 

security challenges. For example, the centralized controller can 

access information that is not obtainable through packet flow in 

conventional networks. Additionally, identifying network port, 

the incoming packet's source device is linked to, simplifies the 

prevention of ARP and DHCP attacks. It supports the 

implementation of network access control systems within SDN 

environments. 

The SDN controllers are continuously enhanced with new 

features and capabilities. However, these enhancements could 

introduce new vulnerabilities if security guidelines are 

overlooked within the design stage. The present research aimed 

to secure the DHCP service within the SDN framework. The 

robustness of the DHCP server has been assessed using source 

code and other experiments. The ONOS SDN controller is used 

as a DHCP relay agent. The findings reveal that the DHCP 

server is susceptible to DHCP attacks. These attacks could 

compromise the DHCP server’s availability and reduce the 

functionality of the network. 

The present approach combines ONOS as a DHCP relay 

agents with a custom script running on the DHCP VM. It 

implements multiple security mechanisms to protect against 

DHCP-based attacks. The ONOS enforces static rule-based 

prevention through flow rules, effectively blocking rogue DHCP 

messages before they reach clients. Additionally, rate-limiting is 

applied per host to prevent DHCP starvation attacks, ensuring 

that excessive requests from a single source do not overwhelm 

the network. The ONOS also provides anomaly detection by 

monitoring DHCP traffic patterns, helping to identify 

irregularities that may indicate an ongoing attack. The proposed 

technique can effectively detect and prevent stealth DHCP 

attacks, whether preemptively before they occur or in response 

to an ongoing attack. However, the approach does not currently 

incorporate ML-based detection, which can enhance adaptability 

against evolving threats. In terms of scalability, ONOS offers 

moderate support for large networks, allowing the existence of 

centralized traffic control and policy enforcement, though 

performance may need further optimization for high-density 

environments. The present solution effectively detects and 

prevents DHCP-related attacks. It does not include automated or 

dynamic defense capabilities that adjust security measures in 

real time. In the future, the different threats targeting the SDN 

network infrastructure will be aimed to be identified & mitigated. 
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