

--

Vol. 44, No. 2, July 2025

Detection and Mitigation of Stealth DHCP Attack in SDN network

Nadia H. Mohammed1,*, Nagwa Salem1, Kamel Rahouma1
1Electrical Engineering Dep., Faculty of Engineering, Minia University, Minia,

Egypt

* Corresponding author(s) E-mail: eng.nadiahassan17@gmail.com

A R T I C L E I N F O A B S T R A C T

Article history:

Received: 23 January 2025

Accepted: 18 Mar 2025

Online: 3 May 2025

 Software-defined networking (SDN) significantly enhances network management through its

centralized controller, which operates independently of forwarding devices. However, SDN security

remains a major challenge. It inherits vulnerabilities from traditional networks due to shared

protocols and introduces new risks from its reliance on software-based systems. Dynamic Host

Configuration Protocol (DHCP), a critical protocol in SDNs, also presents security threats. This

study analyzes the impact of the stealth DHCP starvation attack in an SDN environment where the

Open Network Operating System (ONOS) controller acts as a DHCP relay agent. The analysis

reveals that this configuration is susceptible to stealth DHCP starvation attacks, which can disrupt

network functionality. A Python script is developed and deployed on the DHCP server Virtual

Machine (VM) to address this vulnerability. The script effectively prevents harmful DHCP

messages, restores the IP address pool, and mitigates DHCP-related attacks without imposing

significant system overhead. Results demonstrate that the proposed solution not only enhances

network resilience against attacks, but also improves overall performance. Specifically, it increases

the throughput from 66.0 Mbits/sec to 101.5 Mbits/sec, while the average Round Trip Time (RTT)

is reduced from 455.0 ms to 0.45 ms. Additionally, the transmission rate improves from 46,800

Packet Per Second (pps) to 72,000 pps, ensuring better resource utilization. The proposed approach

provides a practical and efficient method for safeguarding SDN environments against advanced

DHCP-related threats, contributing to the secure and efficient operation of modern networks.

Keywords:

SDN

ONOS

Mininet

DHCP

DHCP starvation attack

1. Introduction

The expansion of online communication necessitates

innovative approaches in communication system technology to

achieve optimization of resource use and support efficient

scaling. The SDN model decouples the control plane from the

data plane, shifting network administration tasks from hardware

devices to centralized software controllers. The controller

manages the network state and determines how data moves

through basic network devices. As a result, the SDN controller is

fundamental to the SDN architecture, and any breach of its

security threatens the entire network's safety. Security in SDN is

a complex challenge. It inherits vulnerabilities from traditional

networks via shared protocols and introduces new issues related

to software-based risks. The DHCP is crucial for SDNs, but its

security vulnerabilities also threaten these networks.
The DHCP obtains network configuration settings, such as IP

addresses, from a DHCP server. However, it is susceptible to a

Denial-of-Service (DoS) attack known as the classical DHCP

starvation attacks. In these attacks, a malicious client sends

numerous IP requests using spoofed MAC addresses. Each time

the server receives one of these requests, it allocates a new IP

address, ultimately leading to the depletion of available

addresses on the DHCP server. In this paper, A stealth DHCP

starvation attack, which differs from the classical attack, is

examined. This attack takes advantage of the IP address conflict

detection mechanisms present in all DHCP clients. It is

particularly stealthy, as many common security features found in

modern network switches are unable to detect it. Furthermore,

other suggested approaches that fall into one of three categories:

encryption, threshold-based, or fair IP address allocation, have

several shortcomings, including high misclassification rates,

difficult threshold-setting processes in threshold-based

mechanisms, and the impossibility of allocating IP addresses to

every port in wireless networks.

Specifically, the paper provides the following contributions:

• A stealthy DHCP starvation attack, that is simple to execute

and hard to detect using existing security measures, is

introduced.

• The effectiveness of the proposed DHCP starvation attack is

evaluated in an SDN network where the ONOS controller acts

as a DHCP relay agent.

• A Python script is created on the DHCP server VM to detect

and block stealth DHCP attacks and remove the malicious

hosts from the network.

• The effectiveness of the proposed mitigation strategy is

assessed, demonstrating significant improvements in the

1

mailto:eng.nadiahassan17@gmail.com

--

throughput (from 66.0 Mbits/sec to 101.5 Mbits/sec) and

reducing RTT (from 455.0 ms to 0.45 ms), among other

performance gains.

This paper is structured as outlined below: Section 1 is the

Introduction. Section 2 offers a brief review of recent research on

SDN and an overview of the Dynamic Host Configuration

Protocol service and DHCP attacks. Section 3 discusses the

Stealth DHCP attack and how to detect and prevent it. Section 4

evaluates the robustness of SDN controllers and DHCP Servers

through anti-attack tests. Finally, Section 5 concludes the work

by summarizing the findings and proposing future research topics.

Research Significant

A series of tests were conducted to examine the impact of

shrinkage inhibitors (SIA) on the mechanical characteristics of

both fresh and hardened self-compacting concrete. To achieve

this objective, a total of twenty-five distinct concrete mixtures

were produced and examined, each including various

combinations of concrete additives. This experimental program

investigated the impact of using various types of cement,

specifically high-range water-reducing and retarding types, with

two different contents of supplementary cementitious materials,

as well as the inclusion of silica fume, on the properties of both

fresh and hardened concrete. Significant findings were derived

from conducting several tests on fresh and hardened concrete

mixtures.

2. Related Works

2.1. The DHCP

The DHCP protocol allows TCP/IP configurations to be

managed centrally, efficiently handling network changes.

Manually assigning IP addresses and other network settings (such

as the default gateway and DNS server IP addresses) to each

device on a network can be time-consuming and error-prone. For

example, there's a risk of IP address conflicts if the same address

is accidentally assigned to multiple devices. Because of these

challenges, most networks today have one or more DHCP servers.

The DHCP servers automatically assign IP addresses to devices

without conflict. A DHCP server is set up with a range of IP

addresses and additional network settings. When a client joins a

network, it attempts to configure its interface with an IP address

by exchanging four messages with the DHCP server, as

illustrated in Figure 1. These messages are DISCOVER, OFFER,

REQUEST, and ACKNOWLEDGMENT (ACK), forming the

(Discover, Offer, Request, and Acknowledge) (DORA) process

for IP address allocation. Additionally, there are other message

types exchanged if the IP address configuration is unsuccessful.

One example is the DHCPDECLINE message, which the client

sends to the DHCP server if it detects that the assigned IP address

is already being used by another client. To identify these conflicts,

a DHCP-enabled client uses ARP request probes to verify

whether the IP address is currently in use.

Figure 1: DHCP DORA Process

2.2. The DHCP Attacks

Understanding the types of DHCP attacks is crucial for

developing detection and mitigation strategies.

• The DHCP Starvation Attack: The attacker floods the network

with DHCP requests, consuming all available IP addresses.

Legitimate devices cannot obtain an IP address, leading to a

denial of service.

• The DHCP Spoofing Attack: To respond to client’s DHCP

queries, the malicious client uses an illegal DHCP server,

providing them with information about DNS servers, default

gateways, and fake IP addresses. By delivering these incorrect

settings, the attacker is capable of executing man-in-the-

middle (MITM) attacks, redirecting clients to harmful

websites, or infecting their systems with malware.

2.3. Detection and Mitigation Techniques for DHCP attacks.

The DHCP protocol is inherently insecure and vulnerable to

DoS attacks, such as DHCP starvation. The proposed detection

method, which is based on port scanning, proved to be highly

effective in identifying DHCP starvation attacks on both local

and remote DHCP networks. However, it cannot detect a host

that blocks all TCP ports. Furthermore, scanning 1000 TCP ports

for each IP address requires a considerable amount of time [1].

A paper [2] introduces another solution to detect and prevent

DHCP starvation attacks as well as to address the shortcomings

of traditional port security techniques. The proposed solution

includes a detailed algorithm for a fair IP address allocation

strategy across ports on a network edge switch. Additionally, the

solution is applied to both wired and wireless networks.

Simulation results indicate that the approach significantly

outperforms methods like fixed IP allocation per port and

malicious DHCP request rate detection.

Also, authors in [3] introduce a stealth starvation attack that is

very efficient in wireless networks, simple to execute, needing

less transmitted messages, and challenging to detect using

existing methods. Additionally, a structurally comparable attack

targeting IPv6 networks is demonstrated, which could disrupt

address configuration protocols such as DHCPv6 and State-less

Address Auto-configuration (SLAAC). Authors further explain a

method for detecting anomalies to detect this attack. An actual

network environment was used to design and test the attack, and

the results were documented. The proposed detection method

leverages the Hellinger distance between two probability

distributions derived from training and testing data to identify the

starvation attack.

2

--

Authors, in [4], evaluate whether the suggested attack is

effective in IPv4 and IPv6 networks, demonstrating that it can

effectively stop other clients from acquiring IP addresses, which

would lead to a DoS scenario. They counteract this threat by

proposing an anomaly detection framework based on Machine

Learning (ML). Specifically, they utilize well-known one-class

classifiers for detection. By capturing IPv4 and IPv6 traffic from

an actual network consisting of several devices, they assess the

performance of various ML algorithms. According to their tests,

these algorithms are highly accurate at detecting attacks in both

IPv4 and IPv6 environments.

A study [5] seeks to create an effective solution for detecting
and automatically neutralizing rogue DHCP servers using a
Python-powered detection system. It begins by illustrating a
MITM attack and its consequences through the deployment of a
rogue DHCP server. Following this, the research presents a
Python-based engine capable of identifying and neutralizing
rogue DHCP servers by differentiating them from legitimate ones
through a comparison of whitelisted IPs and their corresponding
MAC addresses. Lastly, the proposed method's effectiveness is
demonstrated and validated using Multivendor Network
Emulation Software.

A study [6] examines the primary vulnerabilities of the DHCP

protocol, such as its absence of authentication, confidentiality,

and integrity, which make it susceptible to various attacks. These

include rogue DHCP server attacks, DHCP starvation attacks,

and replay attacks. Additionally, the research evaluates the

strategies proposed to detect and prevent these threats, providing

a detailed analysis of their benefits and limitations.

2.4. The SDN

The SDN has improved the networking industry by solving
issues related to scalability, flexibility, and control mechanisms
that are common in conventional networks. A major advantage of
SDN compared to traditional networks is its centralized
management. Traditional networks lack a separate control layer,
making network configuration and management difficult. The
SDN introduces a distinct control layer, simplifying network
management and making it more efficient. Network management
is now more flexible and less reliant on costly hardware and
configuration changes. This benefits not only network
administrators but also potential network intruders. The SDN
separates the control and data planes of the network, but the
separation of the control plane can create a single point of failure
if targeted by DoS or Distributed DoS (DDoS) attacks.
Consequently, security is a critical concern for the SDN.

A paper [7] discusses the security challenges across all three

layers of the SDN and outlines the solutions that network

administrators should implement. It highlights several key

benefits of the SDN security which continues to be a prominent

topic in networking. The primary objective of this paper is to

review the significant advancements in the SDN security, along

with their scope and limitations.

A study [8] examines the security of built-in DHCP services

on three widely used SDN controllers: POX, ONOS, and

Floodlight. The findings reveal that these controllers are

susceptible to starvation attacks, and floods of DHCP discovery

messages can be exploited to launch denial-of-service (DoS)

attacks, causing network slowdowns and overloading the

controllers. To address these vulnerabilities, the researchers

evaluated advanced DHCP security methods and their application

to the DHCP servers embedded in SDN controllers. Based on

their analysis, they developed and implemented a DHCP security

Guard, on the POX controller, incorporating features such as

DHCP snooping, rate limiting, and IP pool recovery.

The controller serves as the "brain" of SDN technology,

driving its intelligent functionality. Different SDN controllers

have been developed to meet the varied demands and tasks

required of them. While many commercial SDN controllers exist,

there are also numerous open-source options available. Among

these, the ONOS has emerged as a prominent trend in open-

source SDN solutions. A paper [9] conducts a comparative

analysis of open-source SDN controllers, including Network

Controller Platform (NOX), Python-based Network Controller

(POX), the component-based SDN framework (Ryu), the Java-

based OpenFlow controller (Floodlight), Open Day Light (ODL),

and ONOS. The discussion delves into the architecture and

evolution of ONOS controllers and examines their use cases

across various applications.

A paper [10] aims to compare the performance of two SDN

controllers, ODL and ONOS, based on their efficiency. The

study utilizes Mininet to simulate switching and end devices,

alongside tools like Wireshark Packet Analyzer and iperf, which

monitor real-time traffic flow between Mininet and the

controller. The performance of an SDN controller is a critical

factor in determining how effectively it functions in a network,

and various metrics are used to evaluate this performance. The

analysis reveals that ONOS outperforms ODL in terms of

throughput, TCP window scaling, TCP/UDP bandwidth, burst

rate, jitter, goodput, TCP Stevens Graph, RTT, and overall

usability. This study provides valuable insights into the

performance capabilities of ONOS and ODL, particularly in

medium-to-large-scale SDN networks.

A paper [11] explores the control plane architectures and

examines various SDN controllers that support them. The authors

evaluated SDN controllers based on key performance metrics,

including scalability, reliability, consistency, and security.

Additionally, they analyzed the mechanisms employed by these

controllers to address these metrics, highlighting the advantages

and disadvantages of each approach. Furthermore, the manuscript

identifies several research challenges and open issues related to

different SDN control plane architectures.

3. Methodology

This part introduces the stealth DHCP starvation attacks and

how to detect and prevent them in SDN networks.

3

--

3.1. Stealth DHCP Starvation attack

As shown in Figure 2, the steps of executing a stealth DHCP

starvation attack on an IPv4 network are as follows:

• IP address is assigned manually by an illegal host: When an

illegal host connects to the network, it disables the DHCP

service running in the background and manually assigns itself

an IP address along with other configuration details. This

prevents the DHCP server from assigning an IP to the

malicious client. It keeps its IP-MAC binding out of the

server’s DHCP database. This tactic allows the malicious

client to evade the Dynamic ARP Inspection (DAI) security

feature, which relies on the DHCP snooping database to detect

discrepancies in IP-MAC bindings.

• A victim client connects to the network and acquires an IP

address from the DHCP server through the DORA process.

Once the allocation is successful, the DHCP server records the

IP-MAC binding for the victim client in its database.

• Victim’s ARP request broadcast: The victim client sends a

broadcast ARP request to confirm whether the assigned IP is

currently being used. At this stage, the victim’s source IP is set

to “0.0.0.0” since it hasn’t configured its network interface

with the assigned IP yet.

• Malicious client’s ARP request broadcast: Upon receiving the

victim’s ARP request, the malicious client broadcasts its own

ARP request. The malicious request uses a source IP of

“0.0.0.0,” the target IP as the assigned IP being probed, a

target MAC of “00:00:00:00:00:00,” and a broadcast

destination MAC of “ff:ff:ff:ff:ff:ff.” The source MAC in the

Ethernet header is the malicious client’s MAC.

• Victim’s decline message: After detecting the malicious ARP

response, the victim client broadcasts a DHCPDECLINE

message to the DHCP server, rejecting the assigned IP address.

The DHCP server then marks this IP as unavailable for the

duration of the lease period. The victim client restarts the

process of acquiring an IP address, but this cycle repeats,

preventing the victim from obtaining a valid IP. Over time, the

DHCP server runs out of available IPs, causing a DoS attack

since all declined IPs remain unusable for their lease duration.

Figure 2: Stealth DHCP attack Process [4]

3.2. The ONOS

• The ONOS is an open-source SDN controller written in Java,

designed to work seamlessly across various platforms such as

Linux, Windows, and macOS. It includes a web-based GUI

and it can be deployed with cluster support in Docker

containers. Targeting carrier networks, the ONOS adopts a

distributed architecture to ensure high availability and

scalability. It empowers large networks by facilitating the

integration of new SDN services alongside their existing

functionalities. Unlike other controllers, the ONOS supports

hybrid network environments [12].

• The ONOS includes a built-in DHCP application, and the

configuration of the DHCP server is done using a JSON file.

To activate the DHCP service, the DHCP server application

must be loaded onto the controller through either the GUI or

CLI. Afterward, the onos-netcfg binary needs to be executed,

specifying the controller's IP address and the JSON file's

directory as parameters

• In present architecture, the ONOS SDN controller is not used

as a DHCP server. It is used as a DHCP relay agent. The

DHCP relay application is activated through the GUI. Then,

the onos-netcfg file is edited, specifying the DHCP server’s IP.

• Using the ONOS, as a DHCP relay agent, allows it to block

rogue DHCP messages before they reach clients. If a DHCP

response comes from an unauthorized source, this source is

blocked by the ONOS blocks by applying the flow rules. This

ensures that only the authorized DHCP server (my DHCP VM)

provides IP addresses.

• The forward mode and other applications in the ONOS

application are also activated as shown in Figure 3.

3.3. MININET

Mininet is a powerful, open-source network emulator for

creating, testing, and prototyping SDNs and other network

architectures. It allows developers and researchers to create

virtual network environments on a single machine, making it

easy to experiment with network configurations and protocols

without requiring physical hardware.

Figure 3: The ONOS active applications

4

--

• Mininet can emulate a full network with hosts, switches, links,

and controllers running as lightweight processes or virtual

machines on a single computer.

• It supports large-scale network topologies, making it suitable

for simulating complex networks while keeping resource

usage minimal.

• It integrates seamlessly with SDN controllers (e.g., ODL, Ryu,

ONOS), making it a popular choice for SDN research and

development.

3.4. Principle of the defensive strategy

• The approach should guarantee that the DHCP server handles

service requests from authorized hosts accurately and without

interruption. It is essential to identify what constitutes an

attack and determine the traffic patterns and threshold values

that need monitoring.

• The solution must identify the DHCP attack before it disrupts

the network communication and causes the DHCP server to

become unavailable.

• To stop malicious traffic from flowing over the network, the

solution must separate the attacker from the network, block the

attack at the point nearest to its source, and repair any harm

the assault has caused to the DHCP server and network

architecture.

The DHCP security solution aims to accomplish these

objectives. This is compatible with other SDN controllers that

use the same protection logic, regardless of the network

topology or complexity. It imposes no processing load that

could affect controller performance. It also offers rapid IP

pool restoration to improve DHCP server uptime.

3.5. The architecture design

The proposed design consists of 4 VMs:

• The ONOS SDN controller, which controls traffic and in the

present scenario, it works as a DHCP relay agent.

• Mininet VM

• DHCP server VM

• Hacking VM

Table 1 lists every element that has been used in our

virtual lab.

Table 1: The present virtual lab components
VM VM Specification Operating System RAM Core

ONOS Ubuntu 18.04.6 4 1

Mininet Mininet 22.04 4 1

DHCP Server Ubuntu 22.04 4 1

Hacker Ubuntu 20.04 4 1

3.6. Effectiveness of the Stealth DHCP attack on the QOS

In this section, the effects of the stealth DHCP starvation

attack on the performance of the network is tested. A tree

topology on the Mininet VM is designed and connected to the

ONOS SDN controller. The performance of this network is

tested during the attack to:

• Determine if the hosts can obtain IPs from the DHCP server.

• Execute a Python script on H7 which functions as the attacker.

After that, H5 and H6 are rebooted to verify whether they can

obtain an IP address from the DHCP server. Finally, the

impact of the attack on network performance is assessed.

• The RTT is measured using ICMP messages between H3 and

H16. About 1000 messages are sent and the RTT is assessed.

• The throughput is measured using Wireshark.

• For bandwidth measurements, iperf is utilized.

Next, a detection script on H1 is executed and a check

whether H5 and H6 can regain IP addresses is done. Then, the

performance measurements is repeated to compare the network's

performance during the attack and after detection.

4. Experiments and performance evaluation

We assign a static IP address to each ONOS SDN controller,

Mininet VM, hacking VM, and DHCP server VM, as in Table 2.

Table 2: The IP addresses of the virtual lab components
VM IP Address

ONOS 192.168.1.100

Mininet 192.168.1.30

DHCP Server 192.168.1.150

Hacker 192.168.1.20

4.1. Testing connectivity between Mininet and ONOS

A basic tree topology is set up in Mininet and connected to

the ONOS SDN controller, as shown in Figure 4. The Mininet

hosts obtained IP addresses from the Mininet pool.

Figure 4: Command to create a simple tree topology.

Figure 5 demonstrates the structure of this tree topology. The

ONOS SDN controller is connected to the Mininet hosts. All

Mininet hosts take IP from the Mininet pool “10.x.x.x/8”. By

default, Mininet assigns hard-coded 10.0.0.0/8 range of IP

addresses to Mininet hosts.

5

--

Figure 5: Simple tree topology

4.2. Ensuring that Mininet hosts can take IP addresses from the

external DHCP server

The DHCP pool range is set up from "192.168.1.180/24" to

"192.168.1.200/24". A Python script is executed on the Mininet

VM to create a simple topology, connecting it to the ONOS

SDN controller. This setup allows Mininet hosts to obtain IP

addresses from our external DHCP server. As shown in Figure 6,

the Mininet hosts can connect to the external DHCP server and

retrieve IP addresses from its pool.

Figure 6: Hosts (h1 and h2) can access DHCP server

4.3. Executing the hacking code on the Hacking VM

A Python hacking script is executed on a designated virtual

machine, which captures ARP requests with a source IP of

0.0.0.0. The script modifies the source MAC address, replacing

it with a new one, and rebroadcasts the altered ARP request. As

a result, the victim client sends a DHCPDECLINE message to

the DHCP server, rejecting the assigned IP address. The DHCP

server marks the declined IP as unavailable for its lease. The

victim client then retries the IP acquisition process, but the cycle

repeats, preventing it from obtaining a valid IP. Over time, the

DHCP server exhausts its pool of available IPs, leading to a DoS

attack as all declined IPs remain unusable for the lease period.

Figure 7 shows the hacker's flowchart and Figure 8 shows the

code running result. The hacking algorithm is as follows:

If the packet is an ARP request:

If the source IP is “0.0.0.0”:

Replace the source MAC address with a new one

Rebroadcast the modified ARP request

Else:

Drop the packet

End

Else:

Drop the packet

End

Figure 7: Hacking flow chart

Figure 8: Hackers (h1 and h2) cannot take IP

4.4. Evaluating the performance of the Python defense code

Before running the detection code on the DHCP server VM,

the following prerequisites should be met: install the necessary

tools, including iptables (for managing network traffic),

tcpdump (for capturing and analyzing network packets), and

arptables (for filtering ARP packets). The detection algorithm is:

If the packet is a discovery message:

Process the packet

Else

If the packet an ARP request with IP {0.0.0.0}:

If there is discovery message for the MAC address:

Process the packet

Else

Drop the packet

End

Else:

Drop the packet

End

End

Figure 9 shows the detection and prevention flowchart and

Figure 10 shows the result of running the code.

6

--

Figure 9: Detection & prevention flow chart

 The Python detection script generates a file to store the MAC

address table and discovery messages. It then adds MAC

addresses and discovery messages to the table while filtering

ARP Probe Requests originating from the IP address "0.0.0.0".

The script checks whether a discovery message exists for the

given MAC address. If a discovery message is found, the

message is processed; if not, the packet is dropped using iptables,

and the source port is blocked. Additionally, the system blocks

network traffic from suspicious MAC addresses or based on

specific port activity. The outcome of running this script on the

DHCP server is given in Figure 10 showing that H1 and H2 can

successfully obtain IP addresses from the DHCP server.

Figure 10: Hosts (h1 and h2) can obtain IPs after running the

detection and prevention code

4.5. Evaluating the network performance under the attack and

after mitigation

This section demonstrates the effect of stealth DHCP

starvation attack on Quality of Service (QoS). A tree topology is

created in Mininet with a fanout of 4 and a depth of 2,

connecting it to the ONOS SDN controller. Host H1 is

configured as the DHCP server, with a DHCP pool ranging from

"192.168.1.75/24" to "192.168.1.95/24", a default gateway of

"192.168.1.1", and a DNS server set to "8.8.8.8". Static IPs are

assigned to H1 ("192.168.1.50") and H7 ("192.168.1.15"), while

the remaining hosts receive their IP addresses dynamically from

the H1 DHCP server. The Mininet script is executed to configure

this setup, as shown in Figure 11, H1 uses the static IP and H2

receives an IP from the DHCP server.

Figure 11: Creating topology

The hacking code is executed on H7. Then, H5 and H6 are

rebooted to observe whether they can obtain an IP from the

DHCP server. Figure 12 shows that they are unable to acquire an

IP. Thus, the impact of the attack on network functionality and

performance can be evaluated. The RTT is measured by sending

approximately 1000 ICMP messages between H2 and H16.

Additionally, the iperf is used to measure the bandwidth

utilization, and also both Goodput and Throughput are measured.

Next, the detection script is executed on H1. Once H5 and H6

are confirmed to be able to obtain IP addresses, the same

network performance tests conducted in the previous section are

repeated. This allows to compare the network performance

before and after the mitigation of the attack. The results are

presented in Table 3.

The results demonstrate that the proposed solution not only

enhances network resilience against attacks, but also improves

the overall performance. Specifically, it increases the throughput

from 66.0 Mbits/sec to 101.5 Mbits/sec, while the average RTT

is reduced from 455.0 ms to 0.45 ms. Additionally, the

transmission rate improves from 46,800 pps to 72,000 pps,

ensuring better resource utilization

Figure 12: H5 and H6 after running the hacking code

7

--

Table 3: Performance comparison before & after mitigation

Metric Under Attack After Mitigation

Max Transmission Rate 48,750 pps 75,000 pps

Min Transmission Rate 44,200 pps 68,000 pps

Average Transmission Rate 46,800 pps 72,000 pps

Max Throughput 67.0 Mbits/sec 103.0 Mbits/sec

Min Throughput 65.6 Mbits/sec 101.0 Mbits/sec

Average Throughput 66.0 Mbits/sec 101.5 Mbits/sec

Max Goodput 63.7 Mbits/sec 98.0 Mbits/sec

Min Goodput 62.1 Mbits/sec 95.5 Mbits/sec

Average Goodput 63.2 Mbits/sec 97.2 Mbits/sec

Min RTT 135.0 ms 0.033 ms

Max RTT 730.0 ms 22.57 ms

Average RTT 455.0 ms 0.45 ms

5. Conclusions

The SDN has improved the network management by

separating the control and data planes. However, while SDN

infrastructure relies on some fundamental protocols that are

likely utilized in conventional networks for client-server

communication, many of these protocols have built-in flaws.

Efforts to counteract these vulnerabilities have shown varying

degrees of success. The SDN offers an ideal framework for

developing innovative and practical solutions to address these

security challenges. For example, the centralized controller can

access information that is not obtainable through packet flow in

conventional networks. Additionally, identifying network port,

the incoming packet's source device is linked to, simplifies the

prevention of ARP and DHCP attacks. It supports the

implementation of network access control systems within SDN

environments.

The SDN controllers are continuously enhanced with new

features and capabilities. However, these enhancements could

introduce new vulnerabilities if security guidelines are

overlooked within the design stage. The present research aimed

to secure the DHCP service within the SDN framework. The

robustness of the DHCP server has been assessed using source

code and other experiments. The ONOS SDN controller is used

as a DHCP relay agent. The findings reveal that the DHCP

server is susceptible to DHCP attacks. These attacks could

compromise the DHCP server’s availability and reduce the

functionality of the network.

The present approach combines ONOS as a DHCP relay

agents with a custom script running on the DHCP VM. It

implements multiple security mechanisms to protect against

DHCP-based attacks. The ONOS enforces static rule-based

prevention through flow rules, effectively blocking rogue DHCP

messages before they reach clients. Additionally, rate-limiting is

applied per host to prevent DHCP starvation attacks, ensuring

that excessive requests from a single source do not overwhelm

the network. The ONOS also provides anomaly detection by

monitoring DHCP traffic patterns, helping to identify

irregularities that may indicate an ongoing attack. The proposed

technique can effectively detect and prevent stealth DHCP

attacks, whether preemptively before they occur or in response

to an ongoing attack. However, the approach does not currently

incorporate ML-based detection, which can enhance adaptability

against evolving threats. In terms of scalability, ONOS offers

moderate support for large networks, allowing the existence of

centralized traffic control and policy enforcement, though

performance may need further optimization for high-density

environments. The present solution effectively detects and

prevents DHCP-related attacks. It does not include automated or

dynamic defense capabilities that adjust security measures in

real time. In the future, the different threats targeting the SDN

network infrastructure will be aimed to be identified & mitigated.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] A. Jony, A. S. M. Miah, and M. N. Islam, “An Effective Method to Detect

DHCP Starvation Attack using Port Scanning,” 2023 Int. Conf. Next-
Generation Comput. IoT Mach. Learn. NCIM 2023, no. August, 2023, doi:

10.1109/NCIM59001.2023.10212773.

[2] H. Mukhtar, K. Salah, and Y. Iraqi, “Mitigation of DHCP starvation attack,”
Comput. Electr. Eng., vol. 38, no. 5, pp. 1115–1128, 2012, doi:

10.1016/j.compeleceng.2012.06.005.

[3] N. Hubballi and N. Tripathi, “A closer look into DHCP starvation attack in
wireless networks,” Comput. Secur., vol. 65, pp. 387–404, 2017, doi:

10.1016/j.cose.2016.10.002.

[4] N. Tripathi and N. Hubballi, “Detecting stealth DHCP starvation attack
using machine learning approach,” J. Comput. Virol. Hacking Tech., vol. 14,

no. 3, pp. 233–244, 2018, doi: 10.1007/s11416-017-0310-x.

[5] A. Jony and M. N. Islam, “An Effective Technique to Automatically Detect

and Neutralize Rogue DHCP Server,” 2023 Int. Conf. Inf. Commun. Technol.

Sustain. Dev. ICICT4SD 2023 - Proc., no. September, pp. 244–248, 2023,

doi: 10.1109/ICICT4SD59951.2023.10303033.

[6] A. A. Abdulghaffar, S. K. Paul, and A. Matrawy, “An Analysis of DHCP

Vulnerabilities, Attacks, and Countermeasures,” 2023 Bienn. Symp.

Commun. BSC 2023, pp. 119–124, 2023, doi:

10.1109/BSC57238.2023.10201458.

[7] P. Ohri and S. G. Neogi, “Software-Defined Networking Security
Challenges and Solutions : A Software-Defined Networking Security

Challenges and Solutions : A Comprehensive Survey,” no. June, 2023, doi:

10.12785/ijcds/120131.

[8] M. S. Tok and M. Demirci, “Security analysis of SDN controller-based

DHCP services and attack mitigation with,” Comput. Secur., vol. 109, p.

102394, 2021, doi: 10.1016/j.cose.2021.102394.

[9] J. A. Rahim, R. Nordin, and O. A. Amodu, “Open-Source Software Defined

Networking Controllers: State-of-the-Art, Challenges and Solutions for

Future Network Providers,” Comput. Mater. Contin., vol. 80, no. 1, pp. 747–

800, 2024, doi: 10.32604/cmc.2024.047009.

[10] A. Singh, N. Kaur, and H. Kaur, “Extensive performance analysis of

OpenDayLight (ODL) and Open Network Operating System (ONOS) SDN
controllers,” Microprocess. Microsyst., vol. 95, no. March, p. 104715, 2022,

doi: 10.1016/j.micpro.2022.104715.

[11] S. Ahmad and A. H. Mir, Scalability, Consistency, Reliability and Security
in SDN Controllers: A Survey of Diverse SDN Controllers, vol. 29, no. 1.

Springer US, 2021. doi: 10.1007/s10922-020-09575-4.

[12] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN controllers: A
comparative study,” Proc. 18th Mediterr. Electrotech. Conf. Intell. Effic.

Technol. Serv. Citizen, MELECON 2016, no. October 2017, 2016, doi:

10.1109/MELCON.2016.7495430.

8

