
 Vol.43, No.1. January 2024

311

http://jaet.journals.ekb.eg

Genetic Optimization for Self-Driving Vehicles Using Automated Behavior Cloning based on

Convolutional Neural Network

Ahmed Moaty
1,*)

, Kamel Hussein Rahouma
2, 3

, Ahmed Donkol
1

1
CCE Dept., faculty of Engineering, Nahda University, Beni-Suef, Egypt

2
Electrical Engineering Dept., Minia University, Minia, Egypt

3
faculty of computer science, Nahda University, Beni-Suef, Egypt

*)
 Email: Ahmedmoaty4@gmail.com

A R T I C L E I N F O A B S T R A C T

Article history:

Received:

Accepted:

Online:

 Recently, autonomous driving technology has learned to drive safely and smoothly. Nonetheless,

using convolutional neural networks (CNNs) has significantly influenced designs of autonomous

driving technology. Most current designs of CNN-based autonomous driving technology are built

manually by specialists in both CNNs and the investigated topics. Thus, finding the optimum CNN

designs for learning safe driving behavior is complex. This study uses genetic algorithms to

construct automated genetic behavior cloning (AGBC). The “Automated” features of the proposed

algorithm require little knowledge of CNNs. Using a front-facing camera and an experienced

driver’s steering directions, researchers can acquire a strong CNNs architecture for learning safe

driving behavior. Furthermore, it can be used to teach AGBC-CNNs to emulate human driving

behavior. We compared our proposed technique AGBC-CNN with four manually adjustment

behavior cloning CNNs (MABC-CNNs) and one automated genetic manually adjustment behavior

cloning CNNs (AGMABC-CNNs) to validate its effectiveness and robustness. Studies show that

AGBC-CNN outperforms existing architecture design techniques (MABC-CNNs and AGMABC-

CNN) in terms of classification accuracy.

Keywords:

Genetic

CNN

Self-driving

Behavior cloning

1. Introduction

The past decade has seen a rapid increase in the installation of

driving assistance and vision systems in vehicles. The automotive

market has begun to move toward “smart” cars, using the most

recent technological advances in their high-end vehicles.

Researchers developing self-driving vehicles may use the

vehicle’s built-in front-facing cameras to create the following

features: (The road’s lanes, identification of free parking spaces,

recognition of traffic signs, detection and recognition of traffic

signals, and detection and tracking of roadside objects). These

features can be tracked and recognized at the same time.

Consequently, the installation of a vision system in the vehicle

(especially the front-facing camera) and possible self-driving car

driving characteristics are designed to enhance the overall safety,

[1].

Convolutional neural networks (CNNs) [2], the dominant

approach in deep learning, have shown fantastic domination over

alternative machine learning methods in many real-world

applications. The performance of a CNN can be significantly

impacted by its design. The most remarkable CNN designs, such

as GoogleNet or ResNet, must be created by experts who

thoroughly grasp data and CNNs. However, this degree of skill is

unavailable to everyone. In both cases, users are not required to

be familiar with CNN structures to understand the data they are

working with. Users with no previous knowledge of CNNs may

now witness the tuning abilities of CNN designs due to the

growing interest in automating the building of CNN structures.

However, CNN design algorithms may stimulate the widespread

use of CNNs, increasing machine intelligence.

There are two categories of CNN architectural design

Revised:14 June, 2022, Accepted:6 October , 2022

algorithms: those that require domain knowledge and those that

do not. Automated manually adjusted (AMA) requires human

tuning in constructing CNN architectures. This category has been

implemented in the AMA genetic CNN, hierarchical

representation (hierarchical evolution), efficient architecture

search method (EAS) [3], Block-QNN-S method [4], and

advanced neural architecture search method (Analyst)., the other

“automated” CNN architectural designs require no human

intervention. Cartesian genetic programming, neural architecture

search, and meta-modeling are examples of large-scale

evolutionary methods. The AMA designs of CNN frequently

exhibit superior performance than its “automatic” variants

because of the additional advantages of manual skill. However,

the critical advantage of the “automatic” designs is their lack of

manual expertise, which is more appreciated by users who have

no prior domain knowledge of CNN. Therefore, designing a

CNN framework is required since NSANet only automates a

portion of the framework’s cells. The final CNN performance

will underwhelm if the framework architecture is poorly

designed. A conceivable CNN architecture can be quickly created

using the available data and the large-scale evolution approach.

Due to this lack of substantial CNN expertise, “automated” CNN

architectural designs are appreciated more by CNN users [7].

CNN architectures can be classified into evolutionary

algorithmic and reinforcement learning-based [8] designs,

depending on the methods used. Evolutionary algorithms are used

by genetic CNNs, large-scale evolution, hierarchical evolution,

and CGP-CNN to identify the optimal answer. However, reward-

penalty reinforcement learning is a method for finding the

optimum solution similar to evolutionary algorithms but uses the

reward-penalty concept of reinforcement learning. Experiments

show that designs using reinforcement learning are more

computationally intensive than those using evolutionary

 Vol.43, No.1. January 2024

312

algorithms. For instance, using the NAS technique [9], it took 28

days and 800 GPUs to find a suitable CNN architecture on the

CIFAR10 dataset. Evolutionary algorithm-based CNN designs

are preferable since they require no high-end computational

resources, which are inaccessible to everyone.

Evolutionary algorithms are a type of metaheuristic

optimization paradigm developed from biological evolution. For

example, the genetic algorithm (GA) is the most widely used

evolutionary algorithm because of its theoretical backing and

promising performance in dealing with several optimization

problems [10, 11]. GA can use bio-inspired operators like

mutation, crossover, and selection to generate high-quality

optimal solutions. Most operators are created from the ground up

to deal with specific problems. Neural network topologies may be

automatically optimized using CNN-GA [11], which employs

evolutionary algorithms. This technique does not need to further

alter the architecture of the neural network. Therefore, it is an

algorithm for automatically creating a CNN architecture.

Humans use their eyes, hands, and brains mainly to drive any

vehicle. Therefore, in an automated vehicle, the detection of road

images using a camera instead of the eye, steering angles

prediction instead of hands, and CCN architecture instead of the

brain is paramount. Thus, the detection of road images and

predicating the steering angle using CCN architecture is the

dominant way to achieve a self-driving car. The suggested

method automates everything without relying on human

involvement to find the optimum CNN designs. Therefore, self-

driving cars use the suggested CNN-GA algorithm that makes the

following contributions:

1) Because the crossover operators are primitively built for

persons of the same length [12], GAs adopt a fixed-length

encoding scheme. Here, a predetermined length for the encoding

is considered. Ideally, the length should be the ideal CNN depth,

which is primarily unknown before the experiment due to the

inaccurate estimation of the supplied quantity. Numerous studies

have separately proposed this variable-length encoding approach.

However, the final CNN architecture is unideal since the

crossover operator does not have a similar redesign. Our research

overcomes the above concerns using an efficient and effective

variable-length encoding approach and a crossover operator

combination.

2) The fundamental components or well-designed blocks of

CNNs form the basis for most extant CNN architectural

algorithms. Hence, both strategies often produce ineffective and

complicated CNN architectures with low generalization abilities,

respectively. Skip connections prevent vanishing gradient (VG)

[13] difficulties in this study while dealing with complex data.

However, this design decreases the search area, making it easier

to identify the optimum performance. However, the designs of

the suggested algorithm are substantially more straightforward

than previous algorithms with comparable performance.

3) Prior algorithms required substantial processing resources

to speed up CNN design and provide consumers with an ideal

CNN architecture within a reasonable period. Particularly, these

algorithms use an inefficient data parallelism method. The

fundamental reason is that most designs are medium-sized and do

not require much computing power. In this absence,

communication costs take up most computing resources. Thus, an

asynchronous computational component is constructed in the

suggested approach to fully use the provided computing

resources to expedite individual fitness assessment. Contrarily, a

caching component minimizes population fitness evaluation time.

The rest of the paper is arranged as follows: Section 2 begins

with a brief introduction to the subject matter and then discusses

comparable works and their context. Section 3 discusses the

proposed algorithm in all its nitty-gritty glory. Finally, Sections 4

and 5 detail the methods, data, and conclusions gleaned from the

research. Section 6 presents conclusions and future projects.

2. Literature Review

2.1. similar work

Vanita Jain [14] used reinforcement learning. The author uses
an iterative update that frequently changes the Q-values to lessen
the correlation further. His methodology demonstrates that, after
several rounds, the virtually produced vehicle creates collision-
free travel and exhibits human-like driving behavior. The
systematic review on AVS [15] using deep learning is divided
into several modules, including tasks like decision-making, end-
to-end controlling and prediction, path and motion planning, and
augmented reality-based -head-up display while analyzing
research works from 2011 to 2021, concentrating on RGB camera
vision. M. R. Bachute [16] investigated variety of tasks, including
Motion Planning, Vehicle Localization, Pedestrian Detection,
Traffic Sign Detection, Road-marking Detection, Automated
Parking, Vehicle Cybersecurity, and Fault Diagnosis, various
Machine Learning and Deep Learning Algorithms are used in
Autonomous Driving Architectures.

2.2. proposed algorithm background

This section focuses on the genetic CNN technique [17],

which is the basis for the proposed algorithm. Generally, a CNN

architecture can be encoded in a genetic CNN via a series of

steps. To produce the final model, several layers of smaller

designs are assembled. NSANet uses convolutional layers to

build the final network. Additionally, the genetic CNN provides a

framework for constructing a network with convolutional layers

replaced with small designs. A “cell” in the genetic CNN is a cell

in a specific stage of development. Each stage in a CNN

formation is encoded with a series of specified building pieces

and their associations. Building elements for the first and final

layers are manually provided, and all subsequent convolutional

layers retain the same parameters for the sequence they are

placed. The linkages between these ordered construction parts are

encoded using a binary string encoding technique as a binary

string. A string serves as a connection point for all components of

the building. As an option, the number of phases can be manually

selected. Many human inputs are required to finish this encoding

strategy, which can be observed by the number of construction

elements and total stages. Because they are linked to the depth of

the discovered CNN, prior knowledge of the CNN domain is

necessary to predefine these values for acceptable CNN depths.

Each level of the construction components of the genetic CNN

cannot be changed. Thus, CNN’s connections can only be

detected, and it does not impact the CNN depth using this

encoding strategy.

 Vol.43, No.1. January 2024

313

3. The Proposed Technique

3.1. Genetic Algorithm

The genetic algorithm is divided into four steps as shown in

Fig. 1.

Figure 1: Flowchart of the genetic algorithm

1. Population initialization

The Population initialization consists of two convolutional

layers and a skip connection to make a skip layer, as shown in

Fig. 2. An influential CNN depends heavily on its depth, and the

skip connections allow it to more efficiently achieve this depth

level. Only the skip and pooling layers are employed to build a

CNN in the proposed encoding approach. The code representing

the whole CNN is the sequential string connection of codes

representing each layer. Thus, a random value, r, is produced

from (0,1) to represent the pooling type for each node during

setup. The feature map numbers for convolutional layers are used

as a string to represent the feature code of a single skip layer [18].

Figure 2: Example of a skip connection

2. Fitness evaluation

The fitness evaluation explains how the population is

evaluated for fitness. Each person’s fitness is directly derived

from the cache if the individual is on it. Alternatively, the person

is put asynchronously on an accessible GPU for a fitness

assessment. Theoretically, irregular names are used when they do

not confuse persons encoding various architectures. When

decoding a CNN, the output of the convolutional layer is

supplemented with a rectifier activation function followed by a

batch normalization procedure, which follows the standards of

current CNNs [19].

Next, the stochastic gradient descent (SGD) technique was

used to train the CNN on the training data on the provided GPU,

and the classification accuracy was determined by the evaluation

data of fitness. The model-parallel pipeline divides a large model

into several smaller ones, each loaded into a GPU. The memory

of one GPU is too little to adequately process all the data

immediately. Thus, the overall processing time is reduced by

completing these sub problems on various platforms. Our

suggested approach has a similar asynchronous component.

For each entry in the cache component, an individual CNN’s
identification and fitness value are combined into one string
similar to a map data structure. A CNN architecture algorithm,
including the suggested method, only evaluates thousands of
CNNs in a real-world application. We need not worry about the
cache component size since it takes very little space on our hard
disks. The cache component, for starters, resembles a map data
structure in that each record is a string that combines the
identification and the fitness value of a CNN. A record like
"identifier1=97.23," for instance, indicates that the identifier is
"identifier1" and its fitness value is "97.23". Second, as we have
already mentioned, the 224-hash code [20] is used to calculate the
identification, which can provide 2224 distinct identifiers. The
suggested approach and other CNN architecture algorithms only
analyses a small number of CNNs in practice. It goes without
saying that we do not need to take the competing situation into
account since it will not arise. Thirdly, the proposed algorithm's
224-hash code implementation will produce an identifier with a
length of 32, and the fitness value is the classification accuracy,
which is represented by a string with a length of 4. A surrogate
model is frequently used to calculate the fitness of
computationally demanding issues, hence avoiding the direct
fitness evaluation. Each record in the cache component is a string
with a length of 37 and a file encoding of UTF-8 that takes up 37
bytes. Even if the cache file contains thousands of items, it will
obviously only take up a very little amount of disc space.
Consequently, we do not require.

 Vol.43, No.1. January 2024

314

Figure 3: Proposed CNN architecture

3. Offspring

The offspring where crossover and mutation are the two

aspects of the proposed method. Because of the crossover

procedure, new offspring will be created and measured using the

collection size. Randomly selecting an individual from the

current population and executing a specific mutation operation

depending on the probabilities. The crossover operator is based

on the one-point crossover used in GAs. Our proposed approach

includes four distinct mutation operators [21]. Because a deeper

CNN has greater power, this design was born out of a desire to

make a more powerful CNN. The input data is halved when just

one pooling layer is used, making the newly found CNN

unavailable.

4. Selection

 Individuals are selected from the current population using the

binary tournament selection and placed into the next population.

The best individual is selected and placed into the parent

population. Otherwise, it replaces the worst individual in the next

parent population [22].

3.2. Proposed CNN architecture

A collection of preconfigured CNN building blocks, population

size, maximum number of GA, and image classification dataset

generations are provided. On the supplied dataset, we access the

fitness of each individual, which encodes a specific CNN

architecture. Then, a population of individuals living into the next

generation is picked using the environmental selection from the

existing population. Generally, the convolutional, pooling, and

sometimes fully connected layers make up a CNN as

demonstrated in Fig. 3.

3.3. Proposed steering angle prediction

 When developing an autonomous driving system, we used

end-to-end learning. Our autonomous driving system used raw

pixels from the image as its input and the steering angle as its

output to manage the vehicle. The trained network will only learn

how to manage a car based on an input signal from the camera

during real-time inference, according to the end-to-end learning

method used as shown in Fig. 4.

Figure 4: steering angle prediction

4. Design of the Experiment

We performed several picture classification tasks to assess the

performance of our proposed algorithm. This section is divided

into three subsections: the first subsection introduces state-of-the-

art (SOTA) algorithms to be compared with the proposed

approach. The second subsection lists the benchmark datasets

used in this study. Finally, we present the parameter settings for

the proposed algorithm in the third subsection.

4.1. The Challengers

To demonstrate the effectiveness of AGBC-CNN, we

compared it with the current SOTA algorithms. These algorithms

were selected from three separate categories. For example,

ResNet [23], DenseNet [24], and VGGNet [25] are examples of

MABC-CNN. We compared two ResNet models with depths of

 Vol.43, No.1. January 2024

315

110 and 1,202, respectively. For simplicity, they are referred to as

ResNet (110 depth) and ResNet (1,202 depth). The results

showed that ResNet (110 depth) has the best classification

accuracy on Udacity Supplied data [26]. Among the DenseNet

versions, we chose the DenseNet-BC version since it realized the

best classification accuracy with the fewest parameters, followed

by VGGNet.

Furthermore, we considered AGMABC-CNN, such as Block-

QNN-S in the second section. Finally, the proposed algorithm

AGBC-CNN, such as CNN-GA + cutout [27] was used in the

third section. The “cutout” refers to a regularization strategy

employed in training CNNs, which potentially increases the

overall performance. The proposed approach provides an

“automated” way to construct promising CNN structures for

those without deep expertise in CNN tuning.

4.2. Datasets

Two primary sources of datasets were used:

To train the proposed and SOTA algorithms, the training

dataset must first be constructed. The first dataset (Udacity data)

was provided by Udacity, containing unzipped files with a size of

365 MB. The files include 24,108 photos evenly distributed

among photographs taken with the center, left, and right front

cameras, as shown in Fig. 5. Each picture has a 160 × 320 pixel

resolution and three channels of RGB color. A CSV file

containing 8,036 entries serves as the index for the data.

Figure 5: Right, center, and left camera

The second dataset (collected data) was generated by the free

source Udacity driving simulator [28]. The unzipped 1,616 MB

data collection contains 99,702 photos from the center, left, and

right front-facing cameras. Additionally, each picture has a 160 ×

320 pixel resolution and three channels of RGB color. Also, the

data index was saved in a CSV file with 33,234 lines of entries.

We obtained the data by driving the automobile manually around

Track 1 in the simulator multiple times (about 10) with the safest

driving style feasible. The inclusion of the “recovery” data was

especially suggested during training. A good beginning point for

capturing data is when the car is about to go off track and the

vehicle is guided in the other direction. This will allow the model

to learn how to recover from a loss of control situation.

Inaccurate data will probably cause model malfunction,

resulting in subpar results. Thus, several data visualization and

analysis subroutines have been created. Fig 6. shows that the

output of these subroutines can be seen in the produced training

collected data. The histogram of the steering angle values

acquired while driving collected data.

Figure 6: Histogram of the steering angle consisting of per 25

bins.

The pictures from the front camera must be preprocessed to

make them more usable and handier during the learning process

before using the training/validation datasets. The preprocessing

stages were designed to enhance training outcomes and minimize

computation. In the sequence of execution, below are the

preprocessing stages that were implemented:

Figure 7: Examples of augmented images

1) Image normalization: In Keras, the “Lambda function”

may normalize color photographs by simply implementing a min-

max scaling. Instead, of 0–255, the RGB pixels’ values are

centered at zero and scaled from −1 to 1.

2) Region of interest concentration: By removing 70 and 25

pixels from each picture, we can concentrate on the area of

interest and limit the number of inputs needed for our analysis

(faster learning process). The photos were reduced to a 65 × 320

× 3 pixel size.

3) Augmentation: All photos (around the y-axis) were flipped,

and the matching steering angles were reversed to double

(enlarge) data. Accordingly, the source-1 and source-2 data

contained 48,216 and 199,404 samples, respectively. For each

CSV line record, six training samples can be generated (center,

left, right, flipped-center, flipped-left, and flipped-right),

changing brightness and shifting in images, as shown in Fig.7.

 Vol.43, No.1. January 2024

316

4) Jittering: Images were “jittered” before being supplied to

the AGBC-CNN and SOTA algorithms to decrease the model’s

potential to overfit the test track circumstances. The jittering

consist of two adjustments the shadows are randomly adjusted,

and the horizontal shift is random. For the shadow effect, we only

require a random rectangular area of the picture that darkens and

extends upwards from the left or right border. An image’s

horizon may be shifted up to 1/8 of the image’s height using a

perspective transform that begins at the horizon line

(approximately 2/5 of the image’s total height). Because the test

track has a specific topology, a horizon shifts mimics this.

5) Flattening: Flattening the distribution of data gathered from

the test track is substantially biased toward low and zero turning

angles because of the track length. As a result, the neural network

is biased toward straight route driving and is easily confused by

sudden curves. Fig. 6 illustrates the distribution of the input data.

A histogram of the turning angles was constructed to limit the

incidence of low and zero-angle data points, and we determined

the average number of samples per bin. Next, a “keep

probability” for each sample of a bin was calculated. For bins

with fewer samples than the average determined for each bin, the

retain probability was set at 1.0. For all other bins, the keep

probability equals the number of samples divided by the average

number of samples per bin. Finally, random data points from the

dataset were deleted with a rate of (1– “keep probability”). The

resultant data distribution is shown in Fig. 8. Overall, the

distribution is not uniform, but it is significantly closer to uniform

at lower and zero turning angles. This strategy speeds up the

training process since reduced-size data were used with more

outstanding quality.

6) Decontaminating the dataset: It was determined that the

model performed very severely on several data points and

subsequently discovered that those data points had been

mislabeled in numerous instances. The dataset with the lowest

model performance was used to build a subroutine that displays

frames from that dataset. We manually modified the steering

angles to compensate for the mislabeled frames. Although this

strategy is tiresome, it enhanced the training outcomes.

Figure 8: Histogram of the steering angle for 300 samples per 25

bins after removing zeros

7) Rearranging images: We shuffled the training data after

each training epoch as a preventative measure against pattern

memorizing and the resulting entrapment in local minima.

8) Data generator: It is necessary to use the generator function

to load data into memory to smooth out the training process. It

was

impossible to store all the data in the computer memory (or

impractical). Thus, the data generator is created and loaded in

memory for each patch (size = 128 pictures and angles). Keras’s

fit generator() function oversees the whole procedure.

4.3. Parameter Setting

The primary goal of this study is to develop AGBC-CNN to

automatically identify new architectures. According to [7],

crossover and mutation probability was set at 0.9 and 0.2,

respectively, to train 350 epochs of SGD with a momentum of

0.9, learning rate decreasing by 0.1 at the 1st, 99th, and 199th

epochs. Finally, we chose one SOTA algorithm and trained it for

300 epochs on the original training dataset. Classification

accuracy was calculated and compared with peer rivals at the end

of the test set. Furthermore, feature maps were limited to (32, 64,

128, 256, and 512) according to the parameters used by SOTA

CNNs. We set the normalized chance of increasing the depth to

0.7 for four mutation processes while the other probabilities

remained equal as shown in Fig. 9. Mutation probabilities may

theoretically be set at any desired level if they are more

significant than the probabilities of other mutations. The

population and generation count were set to 20 in our method and

those of its rivals, as shown in Fig. 10.

Figure 10: Best CNN architecture on collected data using the

proposed algorithm AGBC-CNN

5. Overall Results

Table 1 shows the results of the comparison of the proposed

algorithm with SOTA algorithms. It shows the category titles in

the first column, with the SOTA algorithms organized into three

Figure 9 : the code representing the whole CNN which is the sequential string connection of codes representing each layer

is “32-64-0.7-64-256-0.7-512-256-256-512”.

 Vol.43, No.1. January 2024

317

blocks depending on the categories. Additionally, the final

column gives information on how much human help the

associated CNN requires when finding the CNN architectures.

Furthermore, the SOAT algorithms were listed in the second

column. On the Udacity and collected datasets, the third and

fourth columns relate to their classification accuracy,

respectively. The best CNN found by CNN-GA + cutout in the

previous generation follows from the population and was trained

five times using our proposed technique. The cutout

regularization of CNN-GA as “CNN-GA + cutout.” On the

training set, we first choose the best retrained CNN-GA

architectures with the cutoff from Udacity and collected datasets,

respectively, and then report the classification accuracy on the

testing set.

The SGD with moment technique trains the AGBC-CNN

model using the parameters provided in the previous section. The

following observations were made throughout the training

process. The network was trained using the Udacity dataset

multiple times, but satisfactory results were not produced. The

Udacity driving simulator gathered data by driving the

automobile using a keyboard or joystick. Looping the automobile

around, for example, “Track 1” a few times (more than 10)

provides essential data for training. The transfer learning strategy

was used in the first category, such as in ResNet (depth = 110),

ResNet (depth = 1202), DenseNet-BC, and VGGNet. The final

model was evaluated on “Track 1” in the simulator and provided

acceptable results (no unsafe or sudden maneuvering).

Table 1: Comparisons of the proposed algorithm with the SOTA

algorithms on the Udacity and collected datasets in terms of

classification accuracy.

Algorithms Challengers

Udacity

accuracy

%

Collected

accuracy

%

Manual

assistance

MABC-

CNN

ResNet

(depth =110)
84.98 91.89 Needed

ResNet

(depth =1202)
83.65 90.06 Needed

DenseNet-BC 89.53 93.42 Needed

VGGNet 81.64 91.73 Needed

AGMABC-

CNN
Block-QNN-S 90.04 93.67

Semi-

Needed

AGBC-CNN
CNN-GA +

cutout
91.68 95.87

Not

Needed

Bold numbers specify best results.

From Table 1, the Udacity data accuracy of the proposed

scheme (AGBC-CNN) is 91.68 % which is greater than the

overall challengers of MABC-CNN (84.98%, 83.65%, 89.53%,

and 81.64% respectively according to Table 1) and AGMABC-

CNN (90.04%). Furthermore, in collected data accuracy, the

proposed scheme attains higher accuracy (95.87 %) than

AGMABC-CNN (93.67 %) and all challengers of MABC-CNN.

From the above comparison, the proposed technique behaves

very well in dealing with self-driving vehicles using behavior

cloning.

6. Conclusions

In this work, we proposed an evolutionary algorithm to design

CNNs for self-driving cars for optimization. The essential

contribution was discovering the optimal CNN design; the

number of convolutional layers, skip layer, and pooling layer

parameters required and included in the suggestions. Testing and

analysis using G-CNN optimization approaches have shown that

the recognition rate rose across all case studies, resulting in a

solid performance with the fewest possible inputs to the

algorithm. The collected data had the best accuracy rate of

95.87%, for the Udacity database had accuracy of 91.68%. A

comparison with other current SOTA algorithms on self-driving

cars (Udacity and collected datasets) confirms that the

optimization methodologies used in this study provide

comparable results. We worked to improve the number of

convolutional layers, thickness of those layers, number of skip

layers, and parameters of the pooling layers. Optimizing CNN

topologies using optimization techniques is critical, as shown by

these findings. Other CNN hyper parameters, a new version of

the GA, or various evolutionary computing approaches can be

employed in a future study to develop more resilient CNN

designs for usage in diverse self-driving vehicle datasets.

However, we are investigating working with input photographs in

real-time or video-capturing them instead of static images for

future experiments.

References

[1] T. Elsken, J.-H. Metzen, F. Hutter, “Simple and efficient architecture Search
for convolutional neural networks” arXiv:1711.04528 [cs, stat], 2017,
Accessed: Mar. 21, 2022. [Online]. https://arxiv.org/abs/1711.04528

[2] Y. Sun, B. Xue, M. Zhang, G. G. Yen, “Completely automated CNN
architecture design based on blocks” IEEE Trans. Neural Netw. Learn. Syst.,
31(4), 1242–1254, 2020. https://doi.org/10.1109/TNNLS.2019.2919608.

[3] W. Farag, Z. Saleh, “Behavior cloning for autonomous driving using
convolutional neural networks” IEEE Xplore, 2018.
https://ieeexplore.ieee.org/document/8855753 (accessed Mar. 21, 2022).

[4] H.-C. Shin et al., “Deep convolutional neural networks for computer-aided
detection: CNN architectures, dataset characteristics and transfer learning”
EEE Trans. Med. Imaging, 35(5), 1285–1298, 2016.
https://doi.org/10.1109/tmi.2016.2528162.

[5] D. Wang, “Hierarchical representation learning with connectionist models”
rc.library.uta.edu, Mar. 01, 2018. https://rc.library.uta.edu/uta-
ir/handle/10106/27354 (accessed Mar. 21, 2022).

[6] L. Zhao, W. Fang, “An efficient and flexible automatic search algorithm for
convolution network architectures” IEEE Xplore, Jun. 01, 2021.
https://ieeexplore.ieee.org/abstract/document/9504945 (accessed Mar. 21,
2022).

[7] Y. Sun, B. Xue, M. Zhang, G. G. Yen, J. Lv, “Automatically designing
CNN architectures using the genetic algorithm for image
classification” IEEE Trans. Cybern., 50(9), 3840–3854, 2020.
https://doi.org/10.1109/TCYB.2020.2983860.

[8] Y. Yang, Z. Gao, Y. Li, H. Wang, “A CNN identified by reinforcement
learning-based optimization framework for EEG-based state evaluation”
J. Neural Eng., 18(4), 046059, 2021. https://doi.org/10.1088/1741-
2552/abfa71.

[9] A.-C. Cheng et al., “Searching toward pareto-optimal device-aware neural
architectures” Proceedings of the International Conference on Computer-
Aided Design, Nov. 2018. https://doi.org/10.1145/3240765.3243494.

[10] A. A. Ahmed, S. M. Darwish, “A meta-heuristic automatic CNN
architecture design approach based on ensemble learning” IEEE Access, 9,
16975–16987, 2021. https://doi.org/10.1109/access.2021.3054117.

[11] A. Bakhshi, N. Noman, Z. Chen, M. Zamani, S. Chalup, “Fast automatic
optimisation of CNN architectures for image classification using genetic
algorithm” IEEE Xplore, 2019.

https://arxiv.org/abs/1711.04528

 Vol.43, No.1. January 2024

318

https://ieeexplore.ieee.org/abstract/document/8790197 (accessed Mar. 21,
2022).

[12] D. Chu and J. E. Rowe, “Crossover operators to control size growth in linear
GP and variable length GAs” 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence), Jun.
2008, https://doi.org/10.1109/cec.2008.4630819.

[13] H. Tian, S.-C. Chen, M.-L. Shyu, “Genetic Algorithm Based Deep Learning
Model Selection for Visual Data Classification” 2019 IEEE 20th
International Conference on Information Reuse and Integration for Data
Science (IRI), 2019. https://doi.org/10.1109/iri.2019.00032.

[14] Jain, V., Chaudhry, A., Batra, M. and Gupta, P., 2020. Virtual Autonomous
Vehicle Using Deep Reinforcement Learning. SSRN Electronic Journal.

[15] M. I. Pavel, S. Y. Tan, and A. Abdullah, “Vision-Based Autonomous
Vehicle Systems Based on Deep Learning: A Systematic Literature
Review,” Applied Sciences, vol. 12, no. 14, p. 6831, Jul. 2022, doi:
10.3390/app12146831.

[16] M. R. Bachute and J. M. Subhedar, “Autonomous Driving Architectures:
Insights of Machine Learning and Deep Learning Algorithms,” Machine
Learning with Applications, p. 100164, Sep. 2021, doi:
10.1016/j.mlwa.2021.100164.

[17] F. Johnson, A. Valderrama, C. Valle, B. Crawford, R. Soto, R. Nanculef,
“Automating configuration of convolutional neural network
hyperparameters using genetic algorithm” IEEE Access, 8, 156139–156152,
2020. https://doi.org/10.1109/access.2020.3019245.

[18] T. Kozek, T. Roska, L. O. Chua, “Genetic algorithm for CNN template
learning” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 40(6), 392–
402, 1993. https://doi.org/10.1109/81.238343.

[19] Md. J. Raihan, M. A. R. Ahad, A.-A. Nahid, “Automated Rehabilitation
Exercise Assessment by Genetic Algorithm-optimized CNN” 2021 Joint
10th International Conference on Informatics, Electronics & Vision (ICIEV)
and 2021 5th International Conference on Imaging, Vision & Pattern
Recognition (icIVPR),
2021.https://doi.org/10.1109/icievicivpr52578.2021.9564240.

[20] R. Housley, “A 224-bit One-way Hash Function: SHA-224,” www.rfc-
editor.org, Sep. 2004, doi: 10.17487/RFC3874.

[21] S. Gibb, H. M. La, S. Louis, “A Genetic Algorithm for Convolutional
Network Structure Optimization for Concrete Crack Detection” 2018 IEEE
Congress on Evolutionary Computation (CEC), 2018.
https://doi.org/10.1109/cec.2018.8477790.

[22] S. Lee, J. Kim, H. Kang, D.-Y. Kang, J. Park, “Genetic algorithm based
deep learning neural network structure and hyperparameter optimization”
Appl. Sci., 11(2), 744, 2021. https://doi.org/10.3390/app11020744.

[23] P. K. Shukla, J. K. Sandhu, A. Ahirwar, D. Ghai, P. Maheshwary, P. K.
Shukla, “Multiobjective genetic algorithm and convolutional neural network
based COVID-19 identification in chest X-ray images” Math. Probl. Eng.,
2021, 1–9. 2021.https://doi.org/10.1155/2021/7804540.

[24] A. Garcia-Diaz and H. Bersini, “DensEMANN: Building A DenseNet From
Scratch, Layer by Layer and Kernel by Kernel” 2021 International Joint
Conference on Neural Networks (IJCNN), 2021,
https://doi.org/10.1109/ijcnn52387.2021.9533783.

[25] A. A. Ahmed, S. M. S. Darwish, M. M. El-Sherbiny, “A novel automatic
CNN architecture design approach based on genetic algorithm” Advances in
Intelligent Systems and Computing, 473–482, 2019,
https://doi.org/10.1007/978-3-030-31129-2_43.

[26] Udacity Sample Training Data,
https://d17h27t6h515a5.cloudfront.net/topher/2016/December/584f6e
dd_data/data.zip

[27] T. DeVries and G. W. Taylor, “Improved Regularization of Convolutional
Neural Networks with Cutout” arXiv:1708.04552 [cs], 2017, [Online].
Available: https://arxiv.org/abs/1708.04552.

[28] Udacity Simulator, https://github.com/udacity/self-driving-car-sim

Abbreviation and symbols

CNNs Convolutional Neural Networks

AGBC Automated Genetic Behavior Cloning

MABC-CNNs Manually Adjustment Behavior Cloning CNNs

AGMABC-

CNNs

Automated Genetic Manually

Adjustment

Behavior Cloning CNNs

AMA Automated + Manually Adjusted

EAS Efficient Architecture Search Method

GA Genetic Algorithm

SGD Stochastic Gradient Descent

GA Genetic Algorithm

PI Proportional–Integral

https://arxiv.org/abs/1708.04552
https://github.com/udacity/self-driving-car-sim

