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 Recently, autonomous driving technology has learned to drive safely and smoothly. Nonetheless, 

using convolutional neural networks (CNNs) has significantly influenced designs of autonomous 

driving technology. Most current designs of CNN-based autonomous driving technology are built 

manually by specialists in both CNNs and the investigated topics. Thus, finding the optimum CNN 

designs for learning safe driving behavior is complex. This study uses genetic algorithms to 

construct automated genetic behavior cloning (AGBC). The “Automated” features of the proposed 

algorithm require little knowledge of CNNs. Using a front-facing camera and an experienced 

driver’s steering directions, researchers can acquire a strong CNNs architecture for learning safe 

driving behavior. Furthermore, it can be used to teach AGBC-CNNs to emulate human driving 

behavior. We compared our proposed technique AGBC-CNN with four manually adjustment 

behavior cloning CNNs (MABC-CNNs) and one automated genetic manually adjustment behavior 

cloning CNNs (AGMABC-CNNs) to validate its effectiveness and robustness. Studies show that 

AGBC-CNN outperforms existing architecture design techniques (MABC-CNNs and AGMABC-

CNN) in terms of classification accuracy. 
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1. Introduction 

The past decade has seen a rapid increase in the installation of 

driving assistance and vision systems in vehicles. The automotive 

market has begun to move toward “smart” cars, using the most 

recent technological advances in their high-end vehicles. 

Researchers developing self-driving vehicles may use the 

vehicle’s built-in front-facing cameras to create the following 

features: (The road’s lanes, identification of free parking spaces, 

recognition of traffic signs, detection and recognition of traffic 

signals, and detection and tracking of roadside objects). These 

features can be tracked and recognized at the same time. 

Consequently, the installation of a vision system in the vehicle 

(especially the front-facing camera) and possible self-driving car 

driving characteristics are designed to enhance the overall safety, 

[1]. 

Convolutional neural networks (CNNs) [2], the dominant 

approach in deep learning, have shown fantastic domination over 

alternative machine learning methods in many real-world 

applications. The performance of a CNN can be significantly 

impacted by its design. The most remarkable CNN designs, such 

as GoogleNet or ResNet, must be created by experts who 

thoroughly grasp data and CNNs. However, this degree of skill is 

unavailable to everyone. In both cases, users are not required to 

be familiar with CNN structures to understand the data they are 

working with. Users with no previous knowledge of CNNs may 

now witness the tuning abilities of CNN designs due to the 

growing interest in automating the building of CNN structures. 

However, CNN design algorithms may stimulate the widespread 

use of CNNs, increasing machine intelligence. 

There are two categories of CNN architectural design  
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algorithms: those that require domain knowledge and those that 

do not. Automated manually adjusted (AMA) requires human 

tuning in constructing CNN architectures. This category has been 

implemented in the AMA genetic CNN, hierarchical 

representation (hierarchical evolution), efficient architecture 

search method (EAS) [3], Block-QNN-S method [4], and 

advanced neural architecture search method (Analyst)., the other 

“automated” CNN architectural designs require no human 

intervention. Cartesian genetic programming, neural architecture 

search, and meta-modeling are examples of large-scale 

evolutionary methods. The AMA designs of CNN frequently 

exhibit superior performance than its “automatic” variants 

because of the additional advantages of manual skill. However, 

the critical advantage of the “automatic” designs is their lack of 

manual expertise, which is more appreciated by users who have 

no prior domain knowledge of CNN. Therefore, designing a 

CNN framework is required since NSANet only automates a 

portion of the framework’s cells. The final CNN performance 

will underwhelm if the framework architecture is poorly 

designed. A conceivable CNN architecture can be quickly created 

using the available data and the large-scale evolution approach. 

Due to this lack of substantial CNN expertise, “automated” CNN 

architectural designs are appreciated more by CNN users [7]. 

CNN architectures can be classified into evolutionary 

algorithmic and reinforcement learning-based [8] designs, 

depending on the methods used. Evolutionary algorithms are used 

by genetic CNNs, large-scale evolution, hierarchical evolution, 

and CGP-CNN to identify the optimal answer. However, reward-

penalty reinforcement learning is a method for finding the 

optimum solution similar to evolutionary algorithms but uses the 

reward-penalty concept of reinforcement learning. Experiments 

show that designs using reinforcement learning are more 

computationally intensive than those using evolutionary 
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algorithms. For instance, using the NAS technique [9], it took 28 

days and 800 GPUs to find a suitable CNN architecture on the 

CIFAR10 dataset. Evolutionary algorithm-based CNN designs 

are preferable since they require no high-end computational 

resources, which are inaccessible to everyone. 

Evolutionary algorithms are a type of metaheuristic 

optimization paradigm developed from biological evolution. For 

example, the genetic algorithm (GA) is the most widely used 

evolutionary algorithm because of its theoretical backing and 

promising performance in dealing with several optimization 

problems [10, 11]. GA can use bio-inspired operators like 

mutation, crossover, and selection to generate high-quality 

optimal solutions. Most operators are created from the ground up 

to deal with specific problems. Neural network topologies may be 

automatically optimized using CNN-GA [11], which employs 

evolutionary algorithms. This technique does not need to further 

alter the architecture of the neural network. Therefore, it is an 

algorithm for automatically creating a CNN architecture. 

Humans use their eyes, hands, and brains mainly to drive any 

vehicle. Therefore, in an automated vehicle, the detection of road 

images using a camera instead of the eye, steering angles 

prediction instead of hands, and CCN architecture instead of the 

brain is paramount. Thus, the detection of road images and 

predicating the steering angle using CCN architecture is the 

dominant way to achieve a self-driving car. The suggested 

method automates everything without relying on human 

involvement to find the optimum CNN designs. Therefore, self-

driving cars use the suggested CNN-GA algorithm that makes the 

following contributions: 

1) Because the crossover operators are primitively built for 

persons of the same length [12], GAs adopt a fixed-length 

encoding scheme. Here, a predetermined length for the encoding 

is considered. Ideally, the length should be the ideal CNN depth, 

which is primarily unknown before the experiment due to the 

inaccurate estimation of the supplied quantity. Numerous studies 

have separately proposed this variable-length encoding approach. 

However, the final CNN architecture is unideal since the 

crossover operator does not have a similar redesign. Our research 

overcomes the above concerns using an efficient and effective 

variable-length encoding approach and a crossover operator 

combination. 

2) The fundamental components or well-designed blocks of 

CNNs form the basis for most extant CNN architectural 

algorithms. Hence, both strategies often produce ineffective and 

complicated CNN architectures with low generalization abilities, 

respectively. Skip connections prevent vanishing gradient (VG) 

[13] difficulties in this study while dealing with complex data. 

However, this design decreases the search area, making it easier 

to identify the optimum performance. However, the designs of 

the suggested algorithm are substantially more straightforward 

than previous algorithms with comparable performance. 

3) Prior algorithms required substantial processing resources 

to speed up CNN design and provide consumers with an ideal 

CNN architecture within a reasonable period. Particularly, these 

algorithms use an inefficient data parallelism method. The 

fundamental reason is that most designs are medium-sized and do 

not require much computing power. In this absence, 

communication costs take up most computing resources. Thus, an 

asynchronous computational component is constructed in the 

suggested approach to fully use the provided computing 

resources to expedite individual fitness assessment. Contrarily, a 

caching component minimizes population fitness evaluation time. 

The rest of the paper is arranged as follows: Section 2 begins 

with a brief introduction to the subject matter and then discusses 

comparable works and their context. Section 3 discusses the 

proposed algorithm in all its nitty-gritty glory. Finally, Sections 4 

and 5 detail the methods, data, and conclusions gleaned from the 

research. Section 6 presents conclusions and future projects. 

2. Literature Review 

2.1. similar work 

Vanita Jain [14] used reinforcement learning. The author uses 
an iterative update that frequently changes the Q-values to lessen 
the correlation further. His methodology demonstrates that, after 
several rounds, the virtually produced vehicle creates collision-
free travel and exhibits human-like driving behavior. The 
systematic review on AVS [15] using deep learning is divided 
into several modules, including tasks like decision-making, end-
to-end controlling and prediction, path and motion planning, and 
augmented reality-based -head-up display while analyzing 
research works from 2011 to 2021, concentrating on RGB camera 
vision. M. R. Bachute [16] investigated variety of tasks, including 
Motion Planning, Vehicle Localization, Pedestrian Detection, 
Traffic Sign Detection, Road-marking Detection, Automated 
Parking, Vehicle Cybersecurity, and Fault Diagnosis, various 
Machine Learning and Deep Learning Algorithms are used in 
Autonomous Driving Architectures. 

2.2. proposed algorithm background 

This section focuses on the genetic CNN technique [17], 

which is the basis for the proposed algorithm. Generally, a CNN 

architecture can be encoded in a genetic CNN via a series of 

steps. To produce the final model, several layers of smaller 

designs are assembled. NSANet uses convolutional layers to 

build the final network. Additionally, the genetic CNN provides a 

framework for constructing a network with convolutional layers 

replaced with small designs. A “cell” in the genetic CNN is a cell 

in a specific stage of development. Each stage in a CNN 

formation is encoded with a series of specified building pieces 

and their associations. Building elements for the first and final 

layers are manually provided, and all subsequent convolutional 

layers retain the same parameters for the sequence they are 

placed. The linkages between these ordered construction parts are 

encoded using a binary string encoding technique as a binary 

string. A string serves as a connection point for all components of 

the building. As an option, the number of phases can be manually 

selected. Many human inputs are required to finish this encoding 

strategy, which can be observed by the number of construction 

elements and total stages. Because they are linked to the depth of 

the discovered CNN, prior knowledge of the CNN domain is 

necessary to predefine these values for acceptable CNN depths. 

Each level of the construction components of the genetic CNN 

cannot be changed. Thus, CNN’s connections can only be 

detected, and it does not impact the CNN depth using this 

encoding strategy. 
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3. The Proposed Technique 

3.1. Genetic Algorithm 

The genetic algorithm is divided into four steps as shown in 

Fig. 1. 

 

Figure 1: Flowchart of the genetic algorithm 

1.  Population initialization 

The Population initialization consists of two convolutional 

layers and a skip connection to make a skip layer, as shown in 

Fig. 2. An influential CNN depends heavily on its depth, and the 

skip connections allow it to more efficiently achieve this depth 

level. Only the skip and pooling layers are employed to build a 

CNN in the proposed encoding approach. The code representing 

the whole CNN is the sequential string connection of codes 

representing each layer. Thus, a random value, r, is produced 

from (0,1) to represent the pooling type for each node during 

setup. The feature map numbers for convolutional layers are used 

as a string to represent the feature code of a single skip layer [18]. 

 

Figure 2: Example of a skip connection 

2. Fitness evaluation 

The fitness evaluation explains how the population is 

evaluated for fitness. Each person’s fitness is directly derived 

from the cache if the individual is on it. Alternatively, the person 

is put asynchronously on an accessible GPU for a fitness 

assessment. Theoretically, irregular names are used when they do 

not confuse persons encoding various architectures. When 

decoding a CNN, the output of the convolutional layer is 

supplemented with a rectifier activation function followed by a 

batch normalization procedure, which follows the standards of 

current CNNs [19]. 

Next, the stochastic gradient descent (SGD) technique was 

used to train the CNN on the training data on the provided GPU, 

and the classification accuracy was determined by the evaluation 

data of fitness. The model-parallel pipeline divides a large model 

into several smaller ones, each loaded into a GPU. The memory 

of one GPU is too little to adequately process all the data 

immediately. Thus, the overall processing time is reduced by 

completing these sub problems on various platforms. Our 

suggested approach has a similar asynchronous component. 

For each entry in the cache component, an individual CNN’s 
identification and fitness value are combined into one string 
similar to a map data structure. A CNN architecture algorithm, 
including the suggested method, only evaluates thousands of 
CNNs in a real-world application. We need not worry about the 
cache component size since it takes very little space on our hard 
disks. The cache component, for starters, resembles a map data 
structure in that each record is a string that combines the 
identification and the fitness value of a CNN. A record like 
"identifier1=97.23," for instance, indicates that the identifier is 
"identifier1" and its fitness value is "97.23". Second, as we have 
already mentioned, the 224-hash code [20] is used to calculate the 
identification, which can provide 2224 distinct identifiers. The 
suggested approach and other CNN architecture algorithms only 
analyses a small number of CNNs in practice. It goes without 
saying that we do not need to take the competing situation into 
account since it will not arise. Thirdly, the proposed algorithm's 
224-hash code implementation will produce an identifier with a 
length of 32, and the fitness value is the classification accuracy, 
which is represented by a string with a length of 4. A surrogate 
model is frequently used to calculate the fitness of 
computationally demanding issues, hence avoiding the direct 
fitness evaluation. Each record in the cache component is a string 
with a length of 37 and a file encoding of UTF-8 that takes up 37 
bytes. Even if the cache file contains thousands of items, it will 
obviously only take up a very little amount of disc space. 
Consequently, we do not require. 
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Figure 3: Proposed CNN architecture 

 

 

3. Offspring 

The offspring where crossover and mutation are the two 

aspects of the proposed method. Because of the crossover 

procedure, new offspring will be created and measured using the 

collection size. Randomly selecting an individual from the 

current population and executing a specific mutation operation 

depending on the probabilities. The crossover operator is based 

on the one-point crossover used in GAs. Our proposed approach 

includes four distinct mutation operators [21]. Because a deeper 

CNN has greater power, this design was born out of a desire to 

make a more powerful CNN. The input data is halved when just 

one pooling layer is used, making the newly found CNN 

unavailable. 

4. Selection 

 Individuals are selected from the current population using the 

binary tournament selection and placed into the next population. 

The best individual is selected and placed into the parent 

population. Otherwise, it replaces the worst individual in the next 

parent population [22]. 

 

3.2. Proposed CNN architecture  

A collection of preconfigured CNN building blocks, population 

size, maximum number of GA, and image classification dataset 

generations are provided. On the supplied dataset, we access the 

fitness of each individual, which encodes a specific CNN 

architecture. Then, a population of individuals living into the next 

generation is picked using the environmental selection from the 

existing population. Generally, the convolutional, pooling, and 

sometimes fully connected layers make up a CNN as 

demonstrated in Fig. 3.  

 

3.3. Proposed steering angle prediction 

 When developing an autonomous driving system, we used 

end-to-end learning. Our autonomous driving system used raw 

pixels from the image as its input and the steering angle as its 

output to manage the vehicle. The trained network will only learn 

how to manage a car based on an input signal from the camera 

during real-time inference, according to the end-to-end learning 

method used as shown in Fig. 4. 

 

Figure 4: steering angle prediction 

4. Design of the Experiment 

We performed several picture classification tasks to assess the 

performance of our proposed algorithm. This section is divided 

into three subsections: the first subsection introduces state-of-the-

art (SOTA) algorithms to be compared with the proposed 

approach. The second subsection lists the benchmark datasets 

used in this study. Finally, we present the parameter settings for 

the proposed algorithm in the third subsection. 

4.1. The Challengers 

To demonstrate the effectiveness of AGBC-CNN, we 

compared it with the current SOTA algorithms. These algorithms 

were selected from three separate categories. For example, 

ResNet [23], DenseNet [24], and VGGNet [25] are examples of 

MABC-CNN. We compared two ResNet models with depths of 
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110 and 1,202, respectively. For simplicity, they are referred to as 

ResNet (110 depth) and ResNet (1,202 depth). The results 

showed that ResNet (110 depth) has the best classification 

accuracy on Udacity Supplied data [26]. Among the DenseNet 

versions, we chose the DenseNet-BC version since it realized the 

best classification accuracy with the fewest parameters, followed 

by VGGNet. 

Furthermore, we considered AGMABC-CNN, such as Block-

QNN-S in the second section. Finally, the proposed algorithm 

AGBC-CNN, such as CNN-GA + cutout [27] was used in the 

third section. The “cutout” refers to a regularization strategy 

employed in training CNNs, which potentially increases the 

overall performance. The proposed approach provides an 

“automated” way to construct promising CNN structures for 

those without deep expertise in CNN tuning. 

4.2. Datasets 

Two primary sources of datasets were used: 

To train the proposed and SOTA algorithms, the training 

dataset must first be constructed. The first dataset (Udacity data) 

was provided by Udacity, containing unzipped files with a size of 

365 MB. The files include 24,108 photos evenly distributed 

among photographs taken with the center, left, and right front 

cameras, as shown in Fig. 5. Each picture has a 160 × 320 pixel 

resolution and three channels of RGB color. A CSV file 

containing 8,036 entries serves as the index for the data. 

 

Figure 5: Right, center, and left camera 

The second dataset (collected data) was generated by the free 

source Udacity driving simulator [28]. The unzipped 1,616 MB 

data collection contains 99,702 photos from the center, left, and 

right front-facing cameras. Additionally, each picture has a 160 × 

320 pixel resolution and three channels of RGB color. Also, the 

data index was saved in a CSV file with 33,234 lines of entries. 

We obtained the data by driving the automobile manually around 

Track 1 in the simulator multiple times (about 10) with the safest 

driving style feasible. The inclusion of the “recovery” data was 

especially suggested during training. A good beginning point for 

capturing data is when the car is about to go off track and the 

vehicle is guided in the other direction. This will allow the model 

to learn how to recover from a loss of control situation. 

Inaccurate data will probably cause model malfunction, 

resulting in subpar results. Thus, several data visualization and 

analysis subroutines have been created. Fig 6.  shows that the 

output of these subroutines can be seen in the produced training 

collected data. The histogram of the steering angle values 

acquired while driving collected data. 

 

Figure 6: Histogram of the steering angle consisting of per 25 

bins. 

The pictures from the front camera must be preprocessed to 

make them more usable and handier during the learning process 

before using the training/validation datasets. The preprocessing 

stages were designed to enhance training outcomes and minimize 

computation. In the sequence of execution, below are the 

preprocessing stages that were implemented: 

 

Figure 7: Examples of augmented images 

1) Image normalization: In Keras, the “Lambda function” 

may normalize color photographs by simply implementing a min-

max scaling. Instead, of 0–255, the RGB pixels’ values are 

centered at zero and scaled from −1 to 1. 

2) Region of interest concentration: By removing 70 and 25 

pixels from each picture, we can concentrate on the area of 

interest and limit the number of inputs needed for our analysis 

(faster learning process). The photos were reduced to a 65 × 320 

× 3 pixel size. 

3) Augmentation: All photos (around the y-axis) were flipped, 

and the matching steering angles were reversed to double 

(enlarge) data. Accordingly, the source-1 and source-2 data 

contained 48,216 and 199,404 samples, respectively. For each 

CSV line record, six training samples can be generated (center, 

left, right, flipped-center, flipped-left, and flipped-right), 

changing brightness and shifting in images, as shown in Fig.7. 
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4) Jittering: Images were “jittered” before being supplied to 

the AGBC-CNN and SOTA algorithms to decrease the model’s 

potential to overfit the test track circumstances. The jittering 

consist of two adjustments the shadows are randomly adjusted, 

and the horizontal shift is random. For the shadow effect, we only 

require a random rectangular area of the picture that darkens and 

extends upwards from the left or right border. An image’s 

horizon may be shifted up to 1/8 of the image’s height using a 

perspective transform that begins at the horizon line 

(approximately 2/5 of the image’s total height). Because the test 

track has a specific topology, a horizon shifts mimics this. 

5) Flattening: Flattening the distribution of data gathered from 

the test track is substantially biased toward low and zero turning 

angles because of the track length. As a result, the neural network 

is biased toward straight route driving and is easily confused by 

sudden curves. Fig. 6 illustrates the distribution of the input data. 

A histogram of the turning angles was constructed to limit the 

incidence of low and zero-angle data points, and we determined 

the average number of samples per bin. Next, a “keep 

probability” for each sample of a bin was calculated. For bins 

with fewer samples than the average determined for each bin, the 

retain probability was set at 1.0. For all other bins, the keep 

probability equals the number of samples divided by the average 

number of samples per bin. Finally, random data points from the 

dataset were deleted with a rate of (1– “keep probability”). The 

resultant data distribution is shown in Fig. 8. Overall, the 

distribution is not uniform, but it is significantly closer to uniform 

at lower and zero turning angles. This strategy speeds up the 

training process since reduced-size data were used with more 

outstanding quality. 

6) Decontaminating the dataset: It was determined that the 

model performed very severely on several data points and 

subsequently discovered that those data points had been 

mislabeled in numerous instances. The dataset with the lowest 

model performance was used to build a subroutine that displays 

frames from that dataset. We manually modified the steering 

angles to compensate for the mislabeled frames. Although this 

strategy is tiresome, it enhanced the training outcomes. 

 

Figure 8: Histogram of the steering angle for 300 samples per 25 

bins after removing zeros 

7) Rearranging images: We shuffled the training data after 

each training epoch as a preventative measure against pattern 

memorizing and the resulting entrapment in local minima. 

 

8) Data generator: It is necessary to use the generator function 

to load data into memory to smooth out the training process. It 

was  

impossible to store all the data in the computer memory (or 

impractical). Thus, the data generator is created and loaded in 

memory for each patch (size = 128 pictures and angles). Keras’s 

fit generator() function oversees the whole procedure. 

4.3. Parameter Setting 

The primary goal of this study is to develop AGBC-CNN to 

automatically identify new architectures. According to [7], 

crossover and mutation probability was set at 0.9 and 0.2, 

respectively, to train 350 epochs of SGD with a momentum of 

0.9, learning rate decreasing by 0.1 at the 1st, 99th, and 199th 

epochs. Finally, we chose one SOTA algorithm and trained it for 

300 epochs on the original training dataset. Classification 

accuracy was calculated and compared with peer rivals at the end 

of the test set. Furthermore, feature maps were limited to (32, 64, 

128, 256, and 512) according to the parameters used by SOTA 

CNNs. We set the normalized chance of increasing the depth to 

0.7 for four mutation processes while the other probabilities 

remained equal as shown in Fig. 9. Mutation probabilities may 

theoretically be set at any desired level if they are more 

significant than the probabilities of other mutations. The 

population and generation count were set to 20 in our method and 

those of its rivals, as shown in Fig. 10. 

 

Figure 10: Best CNN architecture on collected data using the 

proposed algorithm AGBC-CNN 

 

5. Overall Results 

Table 1 shows the results of the comparison of the proposed 

algorithm with SOTA algorithms. It shows the category titles in 

the first column, with the SOTA algorithms organized into three 

 

Figure 9 :  the code representing the whole CNN which is the sequential string connection of codes representing each layer 

is “32-64-0.7-64-256-0.7-512-256-256-512”. 
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blocks depending on the categories. Additionally, the final 

column gives information on how much human help the 

associated CNN requires when finding the CNN architectures. 

Furthermore, the SOAT algorithms were listed in the second 

column. On the Udacity and collected datasets, the third and 

fourth columns relate to their classification accuracy, 

respectively. The best CNN found by CNN-GA + cutout in the 

previous generation follows from the population and was trained 

five times using our proposed technique. The cutout 

regularization of CNN-GA as “CNN-GA + cutout.” On the 

training set, we first choose the best retrained CNN-GA 

architectures with the cutoff from Udacity and collected datasets, 

respectively, and then report the classification accuracy on the 

testing set. 

The SGD with moment technique trains the AGBC-CNN 

model using the parameters provided in the previous section. The 

following observations were made throughout the training 

process. The network was trained using the Udacity dataset 

multiple times, but satisfactory results were not produced. The 

Udacity driving simulator gathered data by driving the 

automobile using a keyboard or joystick. Looping the automobile 

around, for example, “Track 1” a few times (more than 10) 

provides essential data for training. The transfer learning strategy 

was used in the first category, such as in ResNet (depth = 110), 

ResNet (depth = 1202), DenseNet-BC, and VGGNet. The final 

model was evaluated on “Track 1” in the simulator and provided 

acceptable results (no unsafe or sudden maneuvering). 

 

Table 1: Comparisons of the proposed algorithm with the SOTA 

algorithms on the Udacity and collected datasets in terms of 

classification accuracy. 

Algorithms Challengers 

Udacity 

accuracy 

% 

Collected 

accuracy 

% 

Manual 

assistance 

MABC- 

CNN 

ResNet  

(depth =110) 
84.98 91.89 Needed 

ResNet  

(depth =1202) 
83.65 90.06 Needed 

DenseNet-BC 89.53 93.42 Needed 

VGGNet 81.64 91.73 Needed 

AGMABC-

CNN 
Block-QNN-S 90.04 93.67 

Semi-

Needed 

AGBC-CNN 
CNN-GA + 

cutout 
91.68 95.87 

Not 

Needed 

Bold numbers specify best results. 

From Table 1, the Udacity data accuracy of the proposed 

scheme (AGBC-CNN) is 91.68 % which is greater than the 

overall challengers of MABC-CNN (84.98%, 83.65%, 89.53%, 

and 81.64% respectively according to Table 1) and AGMABC-

CNN (90.04%). Furthermore, in collected data accuracy, the 

proposed scheme attains higher accuracy (95.87 %) than 

AGMABC-CNN (93.67 %) and all challengers of MABC-CNN. 

From the above comparison, the proposed technique behaves 

very well in dealing with self-driving vehicles using behavior 

cloning. 

6. Conclusions 

In this work, we proposed an evolutionary algorithm to design 

CNNs for self-driving cars for optimization. The essential 

contribution was discovering the optimal CNN design; the 

number of convolutional layers, skip layer, and pooling layer 

parameters required and included in the suggestions. Testing and 

analysis using G-CNN optimization approaches have shown that 

the recognition rate rose across all case studies, resulting in a 

solid performance with the fewest possible inputs to the 

algorithm. The collected data had the best accuracy rate of 

95.87%, for the Udacity database had accuracy of 91.68%. A 

comparison with other current SOTA algorithms on self-driving 

cars (Udacity and collected datasets) confirms that the 

optimization methodologies used in this study provide 

comparable results. We worked to improve the number of 

convolutional layers, thickness of those layers, number of skip 

layers, and parameters of the pooling layers. Optimizing CNN 

topologies using optimization techniques is critical, as shown by 

these findings. Other CNN hyper parameters, a new version of 

the GA, or various evolutionary computing approaches can be 

employed in a future study to develop more resilient CNN 

designs for usage in diverse self-driving vehicle datasets. 

However, we are investigating working with input photographs in 

real-time or video-capturing them instead of static images for 

future experiments. 
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Abbreviation and symbols 

CNNs Convolutional Neural Networks 

AGBC Automated Genetic Behavior Cloning 

MABC-CNNs Manually Adjustment Behavior Cloning CNNs 

AGMABC-

CNNs 

Automated Genetic Manually 

Adjustment  

Behavior Cloning CNNs 

AMA Automated + Manually Adjusted 

EAS Efficient Architecture Search Method 

GA Genetic Algorithm 

SGD Stochastic Gradient Descent 

GA Genetic Algorithm  

PI Proportional–Integral 

 

 

https://arxiv.org/abs/1708.04552
https://github.com/udacity/self-driving-car-sim

