Journal of Advanced

Esifuceitog eide Vol.43, No.2. July 2024

s *21

ISSN : 2682 -2091

http://jaet.journals.ekb.eg

Prediction of Emergency Braking Intention Using Machine Learning Models

Samar MedhatFaculty of EngineeringMinia University samarsoliman @mu.edu.eg®
Abdallah HassanFaculty of Minia University abdallah@mu.edu.eq @
Hassan YounessFaculty of Engineering Minia UniversityHassan_youness@mu.edu.eq ®
Mohammed Moness Faculty of Engineering Minia University m.moness@mu.edu.eq®

Abstract

Since 2000, road accidents are on the rise, being a leading cause of death worldwide. Approximately 94% of all traffic crashes are
due to human mistakes. These mistakes include speeding, reckless driving, or driving under the influence. A significant proportion
of automobile accidents could be avoided with emergency braking support. Driver’s status monitoring and human mistake
detection are some of the most successful applications of electroencephalogram (EEG) signals. This paper proposes a prediction
model for predicting the intention of the driver to use emergency braking using the driver’s electroencephalogram (EEG) signals
coupled with electromyography (EMG) data from leg muscles. The dataset utilized in this investigation was obtained from
eighteen subjects while driving a simulated car by using an electrode cap with 64 scalp sites. The electroencephalogram (EEG)
data signals are segmented to a 150 ms window and applied to five different machine learning classifiers (k-Nearest Neighbor,
Support Vector Machine, Random Forest, Logistic Regression, and Naive Bayes) for prediction. The proposed model can
successfully predict the driver’s emergency braking intention 150 ms before the moment of the brake with an accuracy of 99.6%;
that is, at 100 km/h driving speed, our model can anticipate emergency braking intention 4.22 m earlier. Furthermore, the model
increased the driver’s prediction of emergency brake intention by 15.2% compared to other models.
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Vehicle accidents can be traumatizing. Brain and head

1. INTRODUCTION trauma injuries are common in car crashes, for example,
Since the 20th century, cars have been the primary means of injuries to the neck, trauma to the brain, and spine injuries,
transportation. Cars indicate freedom, movement, and such as fractures, strains, sprains, or disk injuries, not to
autonomy. However, all these benefits have been mention the psychological or emotional distress as a long-
significantly expensive. The World Health Organization term result of these incidents. Furthermore, the economy
(WHO) states that there are 1.3 million people killed in bears a massive burden as a result of car accidents. It is
vehicle accidents each year [1]. This means 3,424 losses per anticipated that the globe would suffer around $1.8 trillion
day or almost two per minute. Further, 20-50 million more from 2015 to 2030, with low- and middle-income nations
people are harmed or incapacitated. WHO places road suffering nearly $834 billion [2].

accidents as the leading cause of mortality for adolescents
between the ages of 15 and 24 and the world’s second-
largest cause of death among children aged 5 to 14 years.

Driving assistance systems have been presented as a possible
solution to this problem to assist and enhance human-based
. . . car control to minimize potential accidents. These systems
0

Shockingly, accidents cause 2.2% of all deaths worldwide are equipped with internal sensors (e.g., speed meters,

(11 accelerometers, and pedals) and external sensors (e.g., lidar,

Revised:23 August , 2022, Accepted:20 October , 2022 sonar, and visual cameras) to collect and analyze
information from the car and its surroundings (e.g., the
presence and condition of other cars or pedestrians) [3]. If
there is an action on the brake pedal, it is perceived as the
driver’s affirmation of the situation’s seriousness. This gives
the system permission to begin an emergency braking
operation once the driver touches the brake pedal, saving
time [4]. Nonetheless, the brake pedal is merely the final
action in a series of behavioral reactions initiated throughout
an emergency braking situation. As a result, attempts have
been made to recover the driver’s braking intent ahead of
time by taking into account additional behavioral cues, such
as steering angle, foot position, head motions, and gas pedal
release [4]. The purpose of this study is to provide a model
that can anticipate a driver’s desire to brake in an emergency
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braking condition using electroencephalogram (EEG) data of
the driver’s brain combined with the electromyography
(EMG) signals from leg muscles on the brake pedal.

The remainder of the article is structured as follows:
Sections 2 and 3 explain the associated work and the used
methodology, respectively, section 4 demonstrates the
discussion and results of this work, section 5 concludes the
article, and the references are in section 6.

2. RELATED WORK

Several studies used the driver’s EEG signals to predict the
intention of an emergency brake. Haufe et al. [4] conducted
the first research on the link between EEG signals and
emergency braking intention by utilizing event-related
potential characteristics (ERP) during simulated driving. A
combination of features (event-related desynchronization,
event-related potential, and readiness potential) was used to
distinguish between no braking, soft braking, and emergency
braking intention [5]. An emergency braking intention
detection model was proposed using the driver’s EEG
signals by applying spatial-frequency features with
regularized linear discriminant analysis [6]. Three support
vector machine-based classifiers were used to distinguish
between 3 driving situations (no braking, soft braking, and
emergency braking) using the driver’s EEG signals [7]. The
driver’s EEG signals were integrated with surrounding data
to better anticipate the driver’s intention to brake [8]. A
model was proposed for predicting emergency braking
intention after exposing participants to fatigue, stress, and
workload using a support vector machine and convolution
neural networks [3]. A study was conducted on a couple of
features, which were autoregressive based and EEG band
power based, for detecting the driver’s braking intention, but
only the autoregressive-based features that were fed to an
artificial neural network classifier yielded positive results
[9]. A comprehensive model was developed for predicting
emergency braking intention by employing convolution
neural networks for feature extraction, and it proved to
outperform the linear discriminant analysis [10].

3. METHODOLOGY

Figure 1 demonstrates an overview of our proposed model’s
architecture to predict the diver’s intention to perform an
emergency brake. The data for this investigation was
obtained from Haufe et al.’s study [4]. The data was
collected from 18 respondents, all of the same age (30.6 +
5.4 years); four of them were females. Subjects were asked
to drive a simulated car consisting of a monitor, gas/brake
pedals, and steering wheel and tailed a computer-controlled
vehicle. During their drive, they were exposed to a variety of
scenarios where they had to do emergency braking. During
each scenario, their EEG brain waves were recorded at a
1000 Hz sampling frequency from 64 scalp sites. Moreover,
the EMG signals that were recorded using a bipolar montage
from the right leg were used to pinpoint the moment that the
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subject performed an emergency brake and the
corresponding EEG signal was recorded. EMG data were
collected from the right leg at the moment the subject hit the
brake pedal. The EEG and EMG signals were filtered and
sampled at a 200 Hz sampling rate (for further details on the
experiment and preprocessing, refer to reference [4]).

3 = Data Segmentation
‘ EEG Signals
% (-300 ms, +1200 ms)

Feature Selection Using
Random Forest

Classification Algorithms

Selected features

Figure 1: Proposed model architecture.

3.1. PREPROCESSING

The dataset contains two-time vectors, one for normal
driving and one for emergency braking. Each vector contains
a time record of the corresponding event’s moments. To
segment the EEG signals, we use the time vectors to locate
each event in the original EEG data and extract a window of
signals —300 ms and 1200 ms around the occurrence of each
event. The average number of windows for the normal
driving events was 209 windows, and an average of 219
windows for the subject’s emergency brakes. Moreover, the
average amplitude of the first 100 ms of the EEG data was
subtracted to achieve a baseline correction segment-wise.
For our prediction, we need to extract a smaller window
from each segment by leaving a 150 ms gap before the
moment of the brake and extracting 150 ms of EEG signals.
This will be the EEG data used for classification to predict
the driver’s intention to perform an emergency brake, as
indicated in Figure 2. All the preprocessing steps were
conducted using MATLAB-Math Works R2020a.

Moment of lead vehicle’s brake Moment of subject’s brake
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@ % before subject
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Figure 2: Extraction of various EEG signals’ windows.

3.2. CLASSIFICATION METHOD

In this study, we employed five different supervised machine
learning classification algorithms to classify between two
classes (normal driving and emergency braking) to predict
the driver’s intention to perform an emergency brake. The
data generated from the segmentation stage, consisting of
160,441 samples, was inputted into the Random Forest
classifier for feature selection. Moreover, the selected
features were split into 75% training cases and 25% test
cases. The feature selection and classification algorithms
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were implemented on Anaconda-Jupyter Notebook using
Python.

3.2.1. RANDOM FOREST CLASSIFIER

Random Forest classifier is a widely used algorithm for
supervised machine learning. It is constructed from several
decision trees, producing the classification prediction [11].
Not only does RF solve the overfitting problem that emerges
with decision trees, but it also has less training time [12].
The hyperparameters used in this study were
min_samples_leaf = 2, n_estimators = 200, n_jobs = 2, and
random_state = 0.

3.2.2. SUPPORT VECTOR MACHINE CLASSIFIER

An SVM is a classifier that is driven by or composed of two
ideas. The initial concept is to transform data into a high-
dimensional space. This approach has the potential to reduce
complicated issues (with complex decision surfaces) to more
straightforward ones involving linear discriminant functions.
The second principle of SVMs is driven by training and
utilizing only inputs that are close to the decision surface
since they give the utmost relevant details regarding
classification [13].

3.2.3. K-NEAREST NEIGHBOR CLASSIFIER

The k-NN is a nonparametric, nonlinear classifier that is
simple to use. It identifies a fresh sample by measuring its
“distance” from a set of patterns stored in memory. The k-
NN classifier chooses the class for this sample based on the
pattern that most closely resembles it, which is the one with
the shortest distance to it. Instead of choosing a single
nearest neighbor sample, it is typically a majority vote
among the k-nearest neighbors. The most often used distance
function is the Euclidean distance [14]. In this study, we
used k = 10.

3.2.4. LOGISTIC REGRESSION CLASSIFIER

The logistic regression, also known as binomial logistic
regression, is easy to implement and efficient to train. The
Logistic Regression algorithm offers a way of applying
linear regression to classification issues. The classification
outcome is a number between [0, 1], which is understood to
represent the likelihood that the class of x is 1. Particularly,
the logistic function, which is described as follows, is the
sigmoid function [15].

f(2) = 1)

where z = &+ x1 i+ x2 &+ ... + X, &, 0 IS the number of
features (59 EEG channels), and x and & represent the values
of the EEG channels and weights, respectively.

1
1+e~%2
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3.2.5. NAIVE BAYES CLASSIFIER

Based on Bayes’s theorem, the NB classifier gives a
straightforward and probabilistic classification and claims
that the retrieved attributes are independent. The NB model
employs a maximum probability method to identify the class
of earlier probabilities and the likelihood distribution of a
feature from a training set to form the class of earlier
probabilities. The results are then utilized to identify the
exact class name for a brand-new test case using a
maximized posterior decision tree [16].

4. DISCUSSION AND RESULTS

In this work, our aim was to predict the driver’s intention of
emergency braking using EEG signals. The data utilized in
this study originated from Haufe et al.’s study [4]. To
forecast the driver’s intentions, we extracted a time window
from the EEG data signals, leaving a 150 ms time gap before
the emergency braking point. Additionally, a baseline
correction was applied. For prediction, we tested five
different classifiers (Random Forest, Support Vector
Machine, k-NN, Logistic Regression, and Naive Bayes). k-
NN was capable of predicting the driver’s intention for
emergency braking 150 ms before pressing the brake paddle
with an accuracy of 99.6 percent, as shown in Table 1 and
Table 2. Moreover, the model produces almost no false
positives and no false negatives.

Additionally, the ROC (receiver operating characteristic)
curve demonstrates the model’s excellent discrimination
between normal driving and predicting emergency braking
situations, which means at 100 km/h driving speed, our
model was able to predict the intention of emergency
braking 4.22 m earlier. Further, the SVM and the random
forest classifier achieved similar results to the k-NN
classifier with emergency braking prediction accuracy of
99% and 98.8%, respectively, as shown in Table 1 and
Figure 3. However, the Naive Bayes classifier did not
perform as well as the other classifiers since it works better
with categorical data.

Haufe et al. [4] used regularized linear discriminant analysis
(RLDA) classifier, whereas, in our study, we used five
different machine learning classifiers (k-NN, Support Vector
Machine, Logistic Regression, Random Forest, and Naive
Bayes). Compared to [4], our model is able to distinguish
between normal driving and emergency braking situations
and to predict the driver’s intention to perform emergency
braking 150 ms before the moment of the brake. In other
words, our model is able to improve the prediction of the
driver’s intention to perform an emergency brake by
15.20%.

Table 1: Performance accuracy of all classifiers.

Random SVM k-NN Logistic
Forest Regression

Naive
Bayes




Accuracy  98.8% 99% 99.6% 80% 54%
Table 2: Classification report for all 5 classifiers.
Classes Precisi Recall  F;-scor
on e
Random Normal driving  0.99 0.99 0.99
Forest
Classifier
Emergency brak 0.99 0.99 0.99
ing
Support Normal driving ~ 0.98 1.00 0.99
Vector
Machine
Emergency brak 1.00 0.98 0.99
ing
k-NN Normal driving  0.99 1.00 0.99
Emergency brak 1.00 0.99 0.99
ing
Naive Normal driving  0.69 0.16 0.26
Bayes
Emergency brak 0.51 0.93 0.66
ing
Logistic Normal driving ~ 0.78 0.84 0.81
Regression
Emergency brak 0.82 0.75 0.78
ing
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Figure 3: ROC curve for all classifiers.
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5. CONCLUSION

This paper proposed a prediction model to predict the
driver’s intention to perform emergency braking using EEG
data. The model predicted the driver’s intention to
emergency brake with a high accuracy of 99.6%. Moreover,
our model improved the prediction performance by 15.2%
compared to previous studies. As with the majority of
studies, the design of the current study is subject to
limitations, the EEG dataset used was recorded during a
simulated driving experience in a car in perfect conditions.
For more practical results, the EEG signals should be
recorded during real-time driving, taking into consideration
all the surrounding influences (e.g., driving time (day/night),
rush hours, and highways) and the driver’s state of mind.
Additionally, it is preferable to consider more driving
situations.
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