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ABSTRACT

Accurate and automatic localization of the common carotid artery (CCA) is extremely important because the
narrowing of the CCA is a silent disease. CCA disease doesn't cause any symptoms in its early stages, and people
don't realize that they usually have a problem until they have a stroke. A stroke occurs when the brain doesn't receive
enough blood for a long time. Brain damage from a stroke can lead to loss of speech or vision, and major strokes can
cause death. In this paper, we proposed various techniques to localize the CCA in transverse section ultrasound (US)
images using deep learning. First, we applied preprocessing to the images in the dataset before detecting the
bounding box containing the CCA. We used a faster regional proposal convolutional neural network (Faster R-CNN)
to detect the rectangular region (bounding box) around the CCA. Then we applied various localization techniques to
localize the CCA in the US images. The proposed method has been performed on ultrasonic transverse images of the
signal processing (SP) Lab. We compared our results with the clinicians' circles obtaining a great match between
them. The accuracy of the bounding box detection was 97.5 and a Jaccard similarity of 90.86% between our
proposed system and the clinicians' manual circles. Our proposed system has shown results that outperform other

systems in Literature.

Keywords: Common Carotid Artery, Deep Learning, ultrasound images, Convolutional neural network, detection

of CCA, Localization of CCA

1 INTRODUCTION

Carotid arteries are known as the main blood vessels in
the neck that supply blood to the brain, neck, and face[1].
The carotid artery obstruction occurs due to high
cholesterol and the accumulation of fatty substances on
the walls of blood vessels, causing artery narrowing that
impedes blood flow to the brain and artery hardens. The
narrowing or blockage of the arteries in the neck area
may impede or stop the supply of blood to the brain,
which leads to the occurrence of strokes[2]. Symptoms
of narrowing of the arteries in the neck do not appear at
the beginning of the disease and the symptoms begin to
appear after a stroke. Therefore, it is necessary to make
regular visits to the vascular specialist to detect problems
early, especially for diabetics, smokers, and heart
patients, starting from the age of 50 years. Stroke is the
second most important cause of death in the world, after
heart disease. Every year, 15 million people worldwide
have a stroke, 5 million of them die, and another 5
million remain permanently disabled[3].
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Automatic and accurate localization of the carotid
artery is a major and important step in the early detection
of carotid artery disease and the application of the
necessary medical intervention without entering into
health complications and treatment before the occurrence
of a stroke[4].

US imaging is used as an expensive and painless non-
invasive test in evaluating blood flow through the carotid
arteries, by bouncing high-frequency ultrasound from the
artery to create images. Doctors use ultrasound to check
for carotid arterial injuries, or to monitor certain
treatments given in the arteries, or to detect blood clots
or stroke. Doppler US helps assess stroke risk, to identify
and evaluate narrowing or blockages in the arteries in the
neck and head. This procedure is useful for evaluating
people who have had a stroke and who have risk factors
for atherosclerosis but no symptoms[5].

Some studies have been proposed to localize and
segment the CCA in transverse mode images. Yang et
al.[6] have been segmented the CCA using histogram
equalization, edge detection, nonlinear filtering, and
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morphological operations as post-processing. They used
180 US images of the CCA obtained from three patients
captured by a Philips/ATL HDI US machine. They
obtained a JSC of 70.5 % by the rapprochement between
their contours and clinician's manual results. A hybrid
semi-automated segmentation model is proposed to
contour the CCA using the GVF-Snake model and
morphological operations by Yang et al.[7].Their dataset
contains 110 CCA slices captured by a Philips US
machine with a frequency of 8.5 MHZ using a linear
transducer. The comparison between their proposed
model and the physician's results gives a JSC of 90.2%.

Radek Benes et al.[8], have suggested a technique to
localize the CCA depend on the grammar-guided genetic
programming. Their collected dataset consists of 68
video sequences where the CCA centroid was marked for
25:45 aged volunteers. The authors obtained a resulting
success of 82.7% for their proposed system by applying
the validation process with expert results. Shivendra
Singh et al.[9] have applied 3 machine learning models
to localize the CCA as Logistic Regression, Support
Vector Machine, and Adaboost classifier based on
features selection. The best results were performed by
the Adaboost classifier which reaches a localization
accuracy of 91.66%. Their dataset contains 100
ARTSENS images dividing as 60 images for training
and 40 images for testing.

A segmentation algorithm of the CCA based on the
modified Dynamic Programming and canny detector
proposed by Hamou et al.[10].Their dataset contains 91
images including normal and abnormal CCA which were
obtained from SONOS 5500 by Philips Medical System.
Their elliptical contours of the CCA were reviewed by
clinicians obtaining a JSC of 88%. Lian Luo et al[11],
have suggested a method requiring user interface to
segment 283 CCA images that contains a weak
boundary. The authors obtained the dataset from a
Chinese Atherosclerosis study and achieved a JSC of
87+9%.

Jan Dorazil et al.[12] have suggested a technique for
CCA localization using an exhaustive search to find all
possible matching centroid of circles in their ROI
detection. Their dataset consists of 145 CCA images for
healthy people photographed by linear probe L14-5/38
ultrasonic medical system using a frequency of 7.
5MHz.The authors obtained a mean error of 3.99 and
misdetection rates of 0.69% by comparing their results
with the ground truth. Tang et al.[13], suggested a
method requiring user intervention to segment the CCA
lumen by extracting the center lines of the artery and
delineate the boundary of the lumen using level sets.
Their proposed technique was trained and tested on open
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access cls2009 challenge dataset obtaining a JSC of
90.2%.

In this paper, we have proposed an automatic and
accurate localization technique to localize the CCA in
transverse section US images using Deep learning. We
detect the CCA and localize it using Faster RCNN and
various localization techniques. The rest of the paper is
streamlined as follows: Section 2 presents the
methodology. The testing environment is described in
section 3. The results and discussion are explained in
section 4. Section 5 presents the conclusion and future
work.

2 METHODOLOGY

We proposed an automated model to localize
the CCA in transverse section US images depending
on two main steps. First, we detect the rectangular
bounding box that contains the CCA in the image
using Faster RCNN. Then, we apply various
localization techniques to localize the CCA. Fig.1
describes the block diagram of our proposed system.

2.1  Pre-processing

We preprocessed both the images used for training
and testing of the dataset before entering the proposed
system. The preprocessing was applied to the original
images of the dataset by downsizing or large sizing the
images [14] to be the same size of 227 x 227 x 3. This
is to fit the size of the images with the deep learning
network used, which is the Faster RCNN containing the
AlexNet as its convolutional neural network.

2.2 CCA bounding box location learning as

ground truth

We used the training Image Labeler Application
which was previously built in MATLAB program to
define the Region of interest (ROI) [15] by applying a
rectangular bounding box around the CCA for each
image in our dataset training images and define the
category of the object inside the bounding box as the
CCA. The bounding box is defined by its left corner
(A, B) and its height and width to create a table that
serves as a ground truth containing the bounding box
coordinates [A, B, width, height]. We used the
AlextNet of 23 layers as the CNN of the Faster RCNN.
The AlexNet was trained by these bounding boxes
which contain the CCA to be fine-tuned and used as a
pre-trained network and can identify the location of the
CCA.

2.3 Applying Faster RCNN
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Fig. 1. A flowchart of the proposed CCA localization system contains two main steps. The CCA bounding box detection and

CCA circle or contour localization techniques.

Faster RCNN was applied to detect the CCA
bounding box efficiently. Faster R-CNN is a deep
learning network introduced by Ross Girshick et
al.[16] for the object detection process. The faster
RCNN consists of a CNN (AlexNet) and a Region
proposal Network (RPN) and it is classified as a new
iteration of Fast RCNN [17]. The AlexNet extracts the
CCA bounding box features to determine the CCA
location. The RPN has trained on the CCA bounding
box coordinates (anchor) predication and compares
its prediction result with the ground truth. The
learning and the CCA anchor predictions continue
until getting an intersection over union (I0U) in large
proportion to the anchors that were marked at the
beginning as the ground truth. If the IOU of the
anchors and the ground truth are greater than 0.7, it
is considered a positive label and the negative label
for 10U is less than 0.3.

The loss function is described as:

1 . 1 . .
L(P., t;) =N_SZrLs (P, B )+AN_ngPr Lg tt") (D)

The prediction of the anchor probability and the
ground truth is P, , P.*. The positive label is t.*. There
are four parameterized coordinates saved in t,for the
predicted bounding box. The smoothed loss is Lg , Lg .
The mini-batch size (Ns = 256) and the number of
anchor locations (Ng ~ 2, 400) and A = 10. The 4
coordinates for the bounding box regression:

ta=(A—A4.)/Cq @
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tp = (B —Bq)/Dq 3)
tc = log (Ci) 4)
tp = log(D/Dg) ®)
" =20 ©)
tp" = (B" —Ba)/Dq )
te" =1og(C"/Cq) (®)
tp” =log(D"/Dya) 9

(A, B) is the bounding box center. The bounding box
width and height are represented in C and D. The
anchor box is A,, and A* is the ground truth box.

2.4 Localization of the CCA

After the bounding box detection that contains
the CCA using Faster RCNN, we applied various
techniques to localize and contour the CCA. The
carotid artery was localized in two ways, using several
methods to localize the CCA as a circle or using the
snake segmentation algorithm to contour the CCA
Lumen Intima Boundary (LIB).

2.4.1  Circle localization methods

The circle localization techniques of the CCA consist
of these essential steps as channel extraction, extracted
channel bounding box filling, centroid and diameter
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detection, and CCA circle drawing. We have applied
three methods to obtain the artery circle that converges
with the clinician’s circle and thus gives the highest
Jaccard similarity. These methods are similar in
channel extraction, extracted channel bounding box
filling, centroid detection, and circle drawing but differ
in the way of calculating the diameter in each method.
First, the channel extraction was applied to extract the
yellow detected bounding box obtained by Faster
RCNN. Then, we fill the extracted channel of the
detected bounding box. After that, a centroid detection
was applied to know the bounding box centroid. The
rectangular bounding box centroid will be the center
point of the circle as (x Centroid, y Centroid) as
illustrated in equation (10), (11) where BoundingBox
(1), BoundingBox (2), BoundingBox (3), and
BoundingBox (4) are the left corner, top corner,
width and height of the bounding box. Finally, the

ALGORITHM 1: THE FIRST CIRCLE LOCALIZATION METHOD

Input: CCA image that contains the detecting yellow

bounding box

Output: localization of the CCA using a red contour

Reading the input image

1. rgbimage < imread(folder)

Extracting the individual red ,blue and green color

channels

2. RedChannel ¢ rgbimage ( :, :,1)

3. BlueChannel ¢ rgbimage (:, :,3)

4. GreenChannel ¢ rgblmage (:, :,2)

Getting the yellow detected bounding box and show it

5. yellowDetectedBoundingBox ¢ RedChannel = = 255&
BlueChannel = =0 & GreenChannel = = 255

6. imshow( yellowDetectedBoundingBox )

Extracted channel bounding box filling

7. yellowDetectedBoundingBox < imfill(
yellowDetectedBoundingBox ,'holes')

8. yelloMask ¢ bwareafilt(yelloMask,1)

9. imshow( yellowDetectedBoundingBox )

10. uint8Image < uint8(255*
yellowDetectedBoundingBox )

11. imwrite (uint8Image,' yellowDetectedBoundingBox
)

Detection of the bounding box centroid and its
equivalent diameter

12. props & regionprops ( yellowDetectedBoundingBox
,'Centroid','EquivDiameter’,'BoundingBox')

CCA localization with a red contour

13. viscircles (props. Centroid, props. EquivDiameter/2)

CCA was localized by a red circle.

x Centroid = BoundingBox (1) + BoundingBox (3)/2
(10)

y Centroid = BoundingBox (2) + BoundingBox (4)/2
(11)

The diameter of the carotid artery circle was
calculated using three methods. The first method is to
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find the equivalent diameter of the circle that has the
same area as the rectangular bounding box. The
equivalent circular diameter is computed as sqrt
(4*Area /pi). The second method is to find the
diameter as the sqrt (Area), as the bounding box sides
are close in length. The third method is to find the
largest side of the rectangle to be the circle diameter.
The first circle localization method steps are shown in
ALGORITHM 1.

2.4.2  Snake segmentation

we applied the snake segmentation algorithm [18] to
delineate the CCA LIB. The detected bounding box
that was obtained from the Faster R-CNN was used as
the initial contour of the snake segmentation algorithm
to segment the CCA lumen. The snake contour k(c)
adjusts itself using a dynamic process that reduces the
energy function that represents as follows

Esnake (k(C)) = Eint (k(C)) + Eimage (k(C)) +
Eexternal (k(C)) = fc(acEcont (k(C)) + BcEcurv (k(C)) +
SCEimage (k(C)) + Eexternal (k(C))) dc

(12)

Where Eint(k(c))v Eimage(k(c)): Econt(k(c)):
Eexternal(K(€)) and Eun(k(c)) denote the internal, image,
continuity, external and curvature of the contour. ac
denotes the strength parameter, fc denotes the tension
parameter and 6¢ denotes the stiffness parameter.

3 TESTING ENVIRONMENT

3.1 Machine tool

Our computations were performed with MATLAB
(2018b) using a Laptop with an Intel® Core™ i3 CPU
M380 @2.53GHZ Processor with 4 GB RAM.
3.2 Dataset
An open-access dataset provided by the SP lab,
Brno University of Technology [19] was used to
localize the CCA in the transverse mode US images.
The dataset was downloaded from the SP Lab site as
an m-by-n-by-3 data array. We used 283 images of the
CCA in the transverse section obtained from an
Ultrasonic OP scanner using a linear probe as 163
images for training and 120 images for testing. The
Localization of the CCA in transverse mode has been
validated using the SP lab ground truth which contains
the center and radius of the Media-Adventitia
Boundary (MAB) circle of the CCA.

4  Results and Discussion

4.1 Evaluation metrics

We have been quantified the performance of the CCA
localization by calculating the JSC for our proposed system
resulting circle or contour and the clinicians' circles to assess
the efficiency of our proposed system as described in
equation (13), respectively [20].

[QNnR|
[QUR|

JSC@Q,R) = (13)
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Where Q is the experts’ manual circle and R is our proposed
system resulting circle or contour, respectively.

4.2 Results

We introduced an automatic and accurate CCA
localization system because this is a very important
step to predict and detect CCA hardening. Carotid
artery occlusion is a slow and progressive disease that
may begin in early childhood. So early diagnosis
contributes to stopping atherosclerosis from getting
worse and thus preventing exposure to a heart attack,
stroke, or medical emergency.

So, we proposed a CCA localization system that
contains two main phases as the CCA bounding box
detection technique and various localization techniques
of the CCA. The CCA bounding box detection was
applied using Faster RCNN. We have achieved correct
CCA bounding boxes in the most utmost cases.
Nevertheless, in a diminutive number of cases, we
didn't get the required CCA bounding box as output.
The CCA detection accuracy is computed as the
percentage of images in which the CCA bounding box
has been successfully detected in the dataset. We have
achieved a CCA detection accuracy of 97.5% which
indicates the CCA bounding boxes that have correctly
detected.

The circle localization methods and the snake
segmentation output have been evaluated by
calculating the JSC between our proposed methods as
the circles or contours and the clinicians' manual
circles. The first circle localization method achieved a
JSC of 90.86% which showed a great match between
our system and the doctor's manual delineations. The
second circle localization method achieved a JSC of
82.54%. The third circle localization method achieved
a JSC of 89.58%. The snake segmentation contours
achieved a JSC of 67.72%. The JSC of our various
methods to localize the CCA was shown in Table 1.

The first circle localization method gave much better
results than other methods and other researchers. This
method got numbers very close to the standard
clinicians' values. Table 2 reviews the performance of
our proposed method in comparison with other
systems showing that our system is superior to others
introduced in the literature.

Table 1
RESULTS OF THE VARIOUS METHODS USED FOR THE CCA
LOCALIZATION IN THE TRANSVERSE MODE

Method (Jaccard similarity)
First circle localization method 90.86
Second circle localization method 82.54
Third circle localization method 89.58
67.72

Shake segmentation algorithm

Table 2

COMPARATIVE ANALYSIS OF VARIOUS ALGORITHMS FOR CCA
LOCALIZATION IN THE TRANSVERSE MODE

# (Jaccard -

Method . N
image  similarity)

Type

Yang et al. [6] 180 70.5 Automated
Yang et al. [7] 110 90.3 Semi-automated
Hamou et al. [10] 91 88 Automated
Lian Luo et al. 283 87+9 Semi-automated
[11]

Tang et al. [13] 56 90.2 Semi-automated
Proposed 120 90.86 Automated
Method
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The CCA bounding box location was learned using

Fig. 2. Applying a rectangular bounding box around the Rol
and classify the ROI as "Carotid" for each image of the training
images of the dataset to serve as aground truth.

Fig. 3. The localization of CCA in transverse mode. The first row
contains the original image. The second row contains the detected
bounding box around the CCA using Faster R-CNN. The third
row provides the red circle of the CCA using the first circle
localization method. The fourth row provides the red circle of the
CCA using the second circle localization method. The fifth row
provides the red circle of the CCA using the third circle
localization method. The sixth row provides the red contour of the
CCA using the snake segmentation algorithm. The seventh row
provides the clinicians’ circle.
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the Image Labeler Application. This is done by
defining the ROI by implementing a rectangular
bounding box surrounding the CCA and label the
category of the object inside the bounding box as the
CCA as shown in Fig. 2. The results of our CCA
localization systems in transverse mode are shown in
Fig. 3.

The first row of Fig. 3 includes different samples of
the original image of the SP lab dataset [19]. The
second row includes the CCA detected bounding boxes
that have correctly recognized after applying the Faster
R-CNN. The third row displays the CCA circle using
the first circle localization method. The fourth row
displays the CCA circle using the second circle
localization method. The fifth row displays the CCA
circle using the third circle localization method. The
sixth row provides the CCA red contour using the
snake segmentation algorithm. The seventh row
provides the clinicians' circle for each image.

4.3 Discussion

In this paper, we have proposed a system for
automatic and accurate localization of the carotid
artery because it is classified from silent diseases that
can cause stroke or paralysis suddenly without prior
warning. Carotid artery disease is one of the most
important causes of stroke, as it is responsible for
supplying the brain with oxygenated blood. Therefore,
people who are at high risk of developing
atherosclerosis should perform a periodic examination
of the carotid artery for early treatment to avoid
serious health problems.

The CCA localization system was applied using the
CCA bounding box detection and the circle
localization techniques to localize the CCA. This is
used as a strong indication and evidence of any simple
change that occurs to the artery or the beginning of the
accumulation of calcium or fatty deposits and thus
taking the necessary medical action without entering
into medical complications.

The bounding box detection technique was utilized
using Faster RCNN that contains AlexNet and RPN
inside it to determine the location of the CCA in the
image. The resizing step is an essential preprocessing
step and is used to assist in the automatic detection of
the CCA using Faster RCNN. We used the AlexNet as
the CNN of the Faster RCNN because it is
distinguished from other networks in that it is trained
faster and limited the overfitting. The AlexNet has 23
layers and (227 x 227 x 3) images were applied in its
input layer. we pre-trained the AlexNet on our dataset
images to determine the CCA location by extracting
the features of the CCA bounding boxes. The RPN has
trained using the CCA bounding box coordinates to
predict it correctly. The RPN training process
continues to reach the closely matched bounding box
with the ground truth.

The CCA detection model was trained for just 10
epochs and the model attested very good performance.
The estimated detection time is roughly 0.2 seconds
per each separate image. The evaluations for Faster R-
CNN are implemented based on the non-maximum
suppression (NMS) parameter threshold which is used
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to lessen the redundancy on proposed regions.

Our system was distinguished from other systems for
obtaining enormously better results than other states of
the arts and getting values that are very adjacent to the
standard clinicians' diagnosis. The CCA bounding box
detection accuracy for identifying the CCA is 97.5%,
this percentage means the number of the dataset
images in which the CCA bounding box was correctly
identified. Also, our system obtained a JSC of 90.86%
by applying a comparison between our circles and the
clinical circles which are given as the center and radius
of the MAB of the CCA circles. This percentage has
surpassed other researches that existed in the literature
as shown in Table Y. We used the clinician's manual
circles as the ground truth to validate our results.

Our proposed system is fully automated and has the
highest similarity with the clinician's standard results.
Unlike the other state of the arts that used a
semiautomated method in their proposed system which
requires user interaction as Yang et al [7] suggested a
semi-automated segmentation procedure to contour the
CCA using the GVF-Snake model and morphological
operations. A method involving a user interface to
segment the CCA images that contain a weak
boundary has been proposed by Lian Luo et al [11].

A semiautomatic segmentation technique focused
on deep learning to segment the carotid ultrasound
images was suggested by Ran Zhou et al. [21] to
identify the patches created by sliding a window along
the standard line of the initial contour where the CNN
model is finetuned in each test task. The carotid is
segmented by adding a region of interest of carotid
images to a U-Net model enabling the network to be
trained for pixel-wise classification end-to-end. Tang
et al. [13] proposed a procedure involving user
interference to segment the CCA lumen by extracting
the artery's center lines and using level sets to delineate
the boundaries of the lumen.

Some studies have targeted the segmentation of wall
interfaces for transverse carotid ultrasound images
[22], [23] but they didn't thoroughly address the
manual tuning issue to achieve reasonable
segmentation results. In this paper, we used the faster
RCNN to get the initial rectangular contour
automatically by fine-tuning the pre-trained AlexNet to
identify the location of the CCA and delineate the
artery circle.

we have applied several methods to obtain the
largest percentage of intersection between our circle
and the clinicians' circle. The point here is to determine
the media adventitia boundary of the common carotid
artery as the clinicians define the CCA circles.
Therefore, the best method for localizing the CCA that
has the highest JSC is when using the equivalent
diameter of the first localization method.

The carotid contours resulting from the snake
segmentation algorithm obtained the lowest Jaccard
similarity by comparing them with clinicians' circles
because the contour determined the lumen intima
boundary, but it is expected that this method will
achieve superior results in the case of determining the
lumen of the artery in the transverse section. Also, the
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snake segmentation method will provide accurate
delineation of the artery in the cases of plaque because
it will be able to accurately track the artery lumen as it
is providing irregular shapes.

We aim to achieve automatic localization and
contouring in cases of plaque and the carotid
longitudinal section in future research developments to
make a complete diagnostic system for carotid artery
disease. The automatic localization will be achieved by
applying the first stage of our proposed system. This
stage will contribute to the automatic determination of
the location of the bounding box, whether in the
longitudinal section or the case of plaque. Then we
will apply the snake segmentation algorithm to trace
over the occluded areas precisely and accurately
delineate the CCA in the longitudinal section.

In this paper, we obtained the initial contour
automatically and applied a snake segmentation
method that provides irregular shapes to accurately
follow the longitudinal section of the artery or the
plaque.

Unlike the other state of the arts that select the initial
bounding box manually as Nirvedh H. Meshram et
al.[24] proposed a semi-automatic segmentation
approach that involves the input of a sonographer to
provide limited inputs, such as bounding boxes or seed
points, to achieve reasonable segmentation output on
these carotid B-mode images in patients with a
substantial plaque and related shadowing artifacts.
Destrempes et al. [25] provided a system by which the
user got a manual segmentation of the carotid plaque
according to which motion prediction and the Bayesian
model were used to approximate plaque boundary.
Also, a method was developed by McCormick et al.
[26] for the manual segmentation of the plaque at the
diastole image using the segmented occluded area
monitored over the rest of the cardiac cycle with a
displacement estimation and using a multi-level
approach and Bayesian regularization. Zhou et al. [27]
utilized U-Net for the plaque segmentation in the
carotid transverse mode by providing the network with
data that were segmented with an initial contour of
media-adventitia and lumen-media  boundaries,
following which a neural network to segment the
plaque.

5 Conclusion and future work

An automated and accurate system was proposed to
localize the CCA in transverse section ultrasound (US)
images using deep learning. Preprocessing was applied
to the input dataset images to be ready for the deep
learning network. The Deep learning network is
represented in using the faster RCNN to detect the
CCA bounding box. After the CCA bounding box
detection, various localization techniques were applied
to localize the CCA. In the future, we aim to apply a
complete diagnostic system for the CCA disease. We
aim to apply our proposed system to the longitudinal
section of the carotid artery but there was no available
dataset that contains sufficient images of the carotid
artery in the longitudinal section. Also, there is a
dearth of databases containing artery occlusion or
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plaque CCA. so, we aim to generate a standard
database containing the CCA images in longitudinal
mode and sufficient images for longitudinal and
transverse of an atherosclerotic artery to apply the
complete diagnostic system.
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