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EFFICIENT IMPLEMENTATION OF LIGHTWEIGHT MDS MATRIX ON 

FPGA

ABSTRACT  

Recently, studying of Maximum Distance Separable (MDS) matrix has become a topic of interest. The MDS matrix 

is the most important component of the diffusion layer in block ciphers. This paper introduces an optimized, low-cost 

hardware construction of Galois Field 𝐺𝐹(28) 4 × 4 MDS matrix. The proposed design is implemented on Field 

programmable Gate Array (FPGA). The proposed design is synthesized targeting Virtex-7 FPGA using Xilinx ISE 

Design suite. Xilinx primitives 𝐿𝑈𝑇6 and 𝐿𝑈𝑇6_2 were used to control exactly the component placement in the design 

to maintain the minimum occupation area. The pipeline and parallel implementation techniques were used to improve 

the speed performance. The verification of the functionality of the proposed design has been proved using the 

ModelSim simulation tool.  The synthesis result of the proposed design shows that, the new proposed architecture 

provides very competitive area and throughput trade-offs. In comparison with other related designs, the proposed 

design occupies the least area with the minimum time delay. The area of the developed MDS matrix design was 

significantly reduced, 68 LUT, with high throughput of 21.178 Gbps. The proposed design is a suitable candidate for 

lightweight cryptographic implementations. 

Keywords—MDS,  FPGA, Xilinx,  Virtex-7, LUT6, Lightweight. 

1. INTRODUCTION  

In the information technology era; the private 

information has to be protected from hackers and third-

parties, furthermore, protecting financial transactions, 

military and industrial secrets from adversaries. 

Cryptography was used in ancient ages, it was known 

as encryption, to transfer messages in secret ways by 

converting it from readable state to unreadable sense. 

Cryptography supplies mechanisms, techniques, and 

tools for confidential and authenticated 

communication, and for accomplishing secure and 

authenticated transformations over the Internet and 

other networks. The modern cryptography ciphering 

and deciphering systems are composed of sets of 

complicated mathematical algorithms together with 

key management procedures to make it hard to break 

by any third-parties [1]. The Substitution-Permutation 

Networks (SPN) have a well-known structure to 

construct the Symmetric-key ciphers such as AES [2]. 

The main components of SPN are diffusion matrices, 

S-boxes, and key schedule. Maximum Distance 

Separable (MDS) matrix is used as the diffusion 

matrices. The MDS is used also in Feistel Ciphers such 

as Twofish [3].  The increasing of the smaller personal 

devices in the past decade to manage secure data has 

encouraged the investigation of modern cryptographic 

primitives with low-cost area. That urge required a 

novel lightweight cryptographic hardware 

implementation. Many studies of MDS codes have 

been performed, such as classification of MDS codes 

[4,5], non-Reed-Solomon MDS codes [6], Recursive 

construction of MDS matrix [7,8], Irregular MDS 

Array [9] ; and lightweight MDS matrices [10–12]. 

 The low-cost MDS is used also in lightweight block 

cipher [13,14]. There are two focal approaches towards 

lightweight MDS matrices. The first approach looks 

for new matrices that permit a good implementation by 

design. The second approach, deal with a given MDS 

matrix and lower its cost by finding a better 

implementation. The second approach is used to 

optimize the implementation of a standardized cipher.  

This paper is based on the second approach in 

designing of a lightweight MDS matrix.  We mostly 

focus on the cost of a hardware implementation of 

MDS matrix.  The MDS of block cipher Twofish is 

chosen to be optimized and synthesized as an example 

of 4-by-4 MDS matrix in 𝐺𝐹(28) [3]. 
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Field Programmable Gate Array (FPGA) is an 

excellent choice for implementation of algorithms 

which need the benefits of the flexibility of software 

platforms, and the speed of the Very Large-Scale 

Integrated Circuits (VLSI), furthermore, the timeless 

of implementation and development. Due to its 

reconfigurability and other benefits; Xilinx FPGA was 

chosen to implement the proposed MDS module. The 

area of Xilinx FPGA is measured with the number of 

Look Up Tables (LUT), and the delay is measured in 

𝑛𝑠 . The Xilinx instantiation primitives Lookup Table 

(LUT) have been used [15], 𝐿𝑈𝑇6 and 𝐿𝑈𝑇6_2 ,these 

components are instantiated directly into the design to 

control the exact placement of the individual blocks. 

 The remainder of the paper is organized as follows. 

Section 2 demonstrates in brief the construction of 

Twofish algorithm and its main blocks. Section 3 

presents the MDS matrix and its functions. Section 4 

describes the implementation of the proposed design. 

Section 5 presents the simulation and synthesis results. 

Finally, section 6 concludes this work. 

2. OVERVIEW OF TWOFISH ALGORITHM 

Twofish is a symmetric key block cipher accepts a 

variable key size up to 256 bits and a block size of 128 

bits. At the Advanced Encryption Standard (AES) 

contest; Twofish was one of the five contestants. The 

algorithm of the cipher is a 16-round Feistel network. 

The  bijective F function made up of  four pre-

computed  key- dependent 8-by-8- bit S-boxes, a fixed 

4-by-4 maximum distance separable matrix (MDS)  

over 𝐺𝐹(28), bitwise rotations , a pseudo-Hadamard 

transform (PHT), and a relatively complex key 

schedule. In Twofish there are two 1-bit rotations 

which are non-Feistel elements. The structure of the 

Twofish algorithm is shown in Fig. 1. 

The Feistel network is used for converting any 

function, called F-function, into a permutation [16]. 

The 16-bytes input plaintext 𝑝0, … , 𝑝15 , 128-bit block 

size, are split into four 32-bit words 𝑃0, … , 𝑃3 using 

little-endian conversion (1), [3].  

      𝑃𝑖 = ∑  𝑝𝑙 (4𝑖+𝑙). 28𝑙         𝑖 = 0,3
𝑙=0 …  , 3         (1)                         

  𝑃0, … , 𝑃3 , plaintext 32-bit words, are XORed with 

four 32-bit expanded key words, 𝑘𝑖 , in input whitening 

process (2). 𝑅𝑖 is the output of whiting process. 

𝑅𝑖 = 𝑃𝑖  𝑋𝑂𝑅 𝑘𝑖                           𝑖 = 0, …  ,3           (2) 

Afterwards, there are sixteen rounds; in each of 

them the two 32-bit words  𝑅0 and 𝑅1  are used as an 

input to the 𝐹 function, 𝑅2 and 𝑅3  are XORed with the 

output of 𝐹 function. 𝑅3 are rotated left by one-bit 

before the XOR procedure, and 𝑅2 are rotated right by 

one-bit after the XOR procedure (3).  

 

𝑅0,𝑟+1 = 𝑅𝑂𝑅(𝑅2,𝑟  ⊕  𝐹0,𝑟 , 1)   

                      𝑅1,𝑟+1 = 𝑅𝑂𝐿(𝑅3,𝑟 , 1) ⊕ 𝐹1,𝑟    𝑟 = 0, … , 15  (3) 

𝑟 is denoted for the round turn. Finally, the two 

halves are swapped for the next round (4). 

𝑅2,𝑟+1 = 𝑅0,𝑟 

                                𝑅3,𝑟+1 = 𝑅1,𝑟                    (4) 

The swap of round 15 is reversed, the output 
𝑅0,16, 𝑅1,16, 𝑅2,16, and  𝑅3,16 are XORed with the 

corresponding 32-bit expanded keys in the output 
whitening process (5). 

         𝐶𝑖 = 𝑅(𝑖+2)𝑚𝑜𝑑 4,16 ⊕  𝑘𝑖+4     𝑖 = 0, …  ,3      (5) 

Subsequently, the four 32-bit words are divided 
into sixteen 8-bit words 𝑐0, … , 𝑐15 via the same Little-
endian conversion method used for the plain text (6). 

       𝑐𝑠 = ⌊
𝐶⌊𝑠

4⁄ ⌋

28(𝑠 𝑚𝑜𝑑 4)⌋  𝑚𝑜𝑑 28           𝑠 = 0, … , 15     (6) 

𝑠  is denoted for the byte order of the cipher text. 
As shown in Fig. 1, the F-function is 64-bit key-
dependent permutation function, consists of four main 
blocks; two g-Function, PHT, 8-bit rotate left block for 
the R, and two 32-bit adders modulo 232. There are 
three inputs to the F-function 𝑅0, 𝑅1, and 𝑟 the round 
number.  The g-function is the most important block in 
Twofish algorithm, each input byte is processed 
through its key-dependent bijective S-boxes; 
subsequently, the outputs are formed as a vector of 
length 4 over 𝐺𝐹(28), and multiplied by 4 × 4 MDS 

 

Fig. 1.  Twofish algorithm structure 
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matrix. The output of MDS matrix is a vector of 32-bit 
word.  

The 𝑔 function is composed of four key dependent 
S-boxes followed by MDS. 𝑇0 and 𝑇1 are the outputs 
of g-functions (7), and the input to PHT; the two 
modulo 232 adders.  

𝑇0   = 𝑔(𝑅0)  

                      𝑇1 =  𝑔 ( 𝑅𝑂𝐿 ( 𝑅0, 8))                (7) 

where 𝑅𝑂𝐿 is the function that rotates their first 
argument (a 32-bit word) left by the number of bits 
indicated by their second argument. The results of F-
function are 32-bit 𝐹0 and 𝐹1 (8). 

𝐹0   = (𝑇0 + 𝑇1 +  𝑘2𝑟+8) 𝑚𝑜𝑑 232 

              𝐹1 = (𝑇0 + 2𝑇1 +  𝑘2𝑟+9) 𝑚𝑜𝑑 232          (8) 

The Twofish key schedule provides 40 expanded 
keys 𝑘0, …  , 𝑘39. Eight expanded keys for whitening 
process and 32 expanded keys for 16 rounds, in 
addition to two subkeys 𝑆0  and  𝑆1  as the inputs to the 
g-function. The Twofish accepts keys of length 128-
bit, 192-bit, and 256-bit.  

3. MAXIMUM DISTANCE SEPERABLE (MDS) 

An MDS matrix is a matrix that describes a 

function with certain diffusion properties that have 

useful cryptographic applications. The codes are 

provided specifically over finite fields with powerful 

algorithms for encoding and decoding.[3,16]. MDS 

represents the main diffusion procedure for the S-box 

output. The 32-bit word input to the g-function is 

divided into four bytes; each byte represents the input 

to its corresponding bijective S-box. The output of the 

S-box is a vector of four bytes 𝑌0, … , 𝑌3, the output is 

multiplied by 4 × 4 MDS matrix over 𝐺𝐹(28); as 

shown in (9); [17]. 

        (

𝑧0
𝑧1
𝑧2
𝑧3

) = (

.
 …  
   .

⋮ 𝑀𝐷𝑆 ⋮
.

   
 …  .

) (

𝑌0
𝑌1
𝑌2
𝑌3

)                    (9) 

A primitive polynomial with degree 8 over 𝐺𝐹(2) 

is used; the polynomial and the hexadecimal 

representation are shown in (10). 

   𝑝(𝑥) =  𝑥8 +  𝑥6 +  𝑥5 + 𝑥3 + 1 = (169)16     (10) 

The MDS matrix is: 

              𝑀𝐷𝑆 = (
01 𝐸𝐹 5𝐵 5𝐵
5𝐵 𝐸𝐹 𝐸𝐹 01
𝐸𝐹 5𝐵 01 𝐸𝐹
𝐸𝐹 01 𝐸𝐹 5𝐵

)                    (11) 

The diffusion mechanism of MDS guaranteed that; 

any change in input byte will followed by changing the 

output bytes. 

4. IMPLEMENTATION OF MDS MODULE 

This section presents the   multiplication of MDS 

matrix in 𝐺𝐹(28) , converting its polynomial form into 

binary form, and minimizing the cost of the hardware 

implementation of the proposed design. 

4.1 CONVERTING MDS MATRIX INTO BINARY 

FORM 

   The MDS module is repeated four times in the 

same round, twice for the g-function and twice for the 

h-function in key schedule; as shown in Fig. 2, [3]. 

The h function generates the subkeys in Twofish, 

which can be presented as four key-dependent S-boxes 

followed by an MDS matrix [3]. Therefore, the main 

purpose of this article is to provide an improved 

hardware design of the MDS module for Twofish 

algorithm without increasing its time delay. Xilinx 

FPGA used to implement the proposed design. The 

following equation (12) of the MDS matrix output can 

be deduced from (9) and (11). 

𝑧0 =  𝑌0 +  𝑌1. 𝐸𝐹 + 𝑌2. 5𝐵 +  𝑌3. 5𝐵 

𝑧1 =   𝑌0. 5𝐵 +  𝑌1. 𝐸𝐹 + 𝑌2. 𝐸𝐹 + 𝑌3 

𝑧2 =   𝑌0. 𝐸𝐹 +  𝑌1. 5𝐵 + 𝑌2 + 𝑌3. 𝐸𝐹 

             𝑧3 =   𝑌0. 𝐸𝐹 +  𝑌1 +  𝑌2. 𝐸𝐹 + 𝑌3. 5𝐵        (12) 

Every single multiplication operation in (12) is 

performed using polynomial mathematics over 

𝐺𝐹(28), with the primitive polynomial 𝑝(𝑥) = 16916, 

as shown in (10). In the polynomial arithmetic the 

addition is just XOR operation. Referring to (10) and 

(12), there are mainly two modular multiplication 

operations (13). 

 
Fig. 2 MDS module in one round 
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                       A= (𝑌𝑗 . 5𝐵16)𝑚𝑜𝑑 16916 

        B=(𝑌𝑗 . 𝐸𝐹16)𝑚𝑜𝑑 16916     𝑗 = 0, …  , 3  (13)               

 𝑌𝑗 is one input byte and the only unknown in (13). 

Therefore, MATLAB was used to deduce the lookup 

tables of 256-bytes for each modular multiplication 

operation of 𝐴 and 𝐵. The outputs of the two lookup 

tables are minimized, and the resulted outputs are 𝐴 =
 𝑎7, 𝑎6, …  , 𝑎0, and 𝐵 =  𝑏7, …  , 𝑏0. The algorithms 

for modules A and B are demonstrated in Algorithm-1 

and Algorithm-2 respectively.   The four-input bytes of 

the MDS module are represented by:                                   

𝑌𝑗 =  𝑦7,𝑗 , 𝑦6,𝑗 , … , 𝑦0,𝑗 .   

4.2 OPTIMIZATION OF MDS SUB-MODULES 

Some techniques have been applied to optimize the 

area of the proposed design. Referring to Algorithm-1 

and Algorithm-2, there are 14 XOR operations are 

required in A module, and there are 23 XOR 

operations are required in B module. Each XOR 

operation needs one LUT, then, there are 37 LUTs are 

required. Therefore, more optimization is needed. The 

cost of the implementation can be decreased by 

decreasing the number of LUTs, the available 

primitives of the FPGA can be utilized. Fig. 3 shows 

the LUT6 and 𝐿𝑈𝑇6 − 2 block diagrams, it is 

available  in Xilinx 7-series and also in Spartan-6 

FPGA [18]. Thus, the available primitives of the 

Xilinx FPGA have been used to control the exact 

placement of individual LUTs.  

 𝐿𝑈𝑇6 − 2 can produce two bits of sub-module 

output instead of one in regular 𝐿𝑈𝑇, each two semi-

similar output bits of sub-module have been utilized to 

be the two outputs of single 𝐿𝑈𝑇6 − 2. Therefore, the 

A-module has become only 4 LUTs; instead of 14 

LUTs. The B-module has become only 5 LUTs; 

instead of 23 LUTs. The output function for each 𝐿𝑈𝑇 

of A-module and B-module is shown in Algorithm-1 

and Algorithm-2 respectively.  

4.3 IMPLEMENTATION OF THE PROPOSED DESIGN 

ON      FPGA 

The proposed hardware design of MDS matrix has 

been described using Schematic design tool in Project 

Navigator of Xilinx ISE-14.4; utilizing the primitives 

𝐿𝑈𝑇6 and 𝐿𝑈𝑇6_2 of the Virtex-7 FPGA. Referring to 

(12), twelve A and B sub-modules are needed to 

construct the MDS module, nonetheless, only four A 

sub-modules and four B sub-modules are required in 

the proposed design. The algorithm of the proposed 

MDS module is shown in Algorithm-3.  The 

implementations of A-module and B-module are 

shown in Fig. 4 and Fig. 5 respectively. 

Algorithm-1 MDS A-Module 

Input: 𝑌𝑗 =  𝑦7,𝑗 , 𝑦6,𝑗 , … , 𝑦0,𝑗 .[ 𝐨𝐧𝐞 − 𝐁𝐲𝐭𝐞].  

Output: 𝐀 =   (𝑌𝑗. 5𝐵16)𝑚𝑜𝑑 16916 .[ 𝐨𝐧𝐞 − 𝐁𝐲𝐭𝐞]. 

--LUT 𝒂𝟎 − 𝒂𝟐 

𝑎0 =  𝑦
0,𝑗

⊕  𝑦
2,𝑗

; 

𝑎2 =  𝑦
1,𝑗

⊕  𝑦
2,𝑗

⊕ 𝑦
4,𝑗

; 
--LUT 𝒂𝟏 − 𝒂𝟑 

𝑎1 =  𝑦
0,𝑗

⊕  𝑦
1,𝑗

⊕ 𝑦
3,𝑗

; 

𝑎3 =  𝑦
0,𝑗

⊕  𝑦
3,𝑗

⊕ 𝑦
5,𝑗

; 

--LUT 𝒂𝟒 − 𝒂𝟔 

𝑎4 =  𝑦
0,𝑗

⊕  𝑦
1,𝑗

⊕ 𝑦
4,𝑗

⊕ 𝑦
6,𝑗

; 

𝑎6 =  𝑦
0,𝑗

⊕  𝑦
6,𝑗

; 

--LUT 𝒂𝟓 − 𝒂𝟕 

𝑎5 =  𝑦
1,𝑗

⊕  𝑦
5,𝑗

⊕ 𝑦
7,𝑗

; 

𝑎7 =  𝑦
1,𝑗

⊕  𝑦
7,𝑗

; 

Return (𝐴 =  𝑎7 & 𝑎6& 𝑎5 & 𝑎4 & 𝑎3 & 𝑎2& 𝑎1 & 𝑎0) 

 

Algorithm-2 MDS B-Module 

Input: 𝑌𝑖 =  𝑦7,𝑗 , 𝑦6,𝑗, … , 𝑦0,𝑗 .[ 𝐨𝐧𝐞 − 𝐁𝐲𝐭𝐞]  

Output: 𝐁 =   (𝑌𝑗. 𝐸𝐹16)𝑚𝑜𝑑 16916 .[ 𝐨𝐧𝐞 − 𝐁𝐲𝐭𝐞] 

--LUT 𝒃𝟎 − 𝒃𝟕 

𝑏0 =  𝑦
0,𝑗

⊕  𝑦
1,𝑗

⊕ 𝑦
2,𝑗

; 

𝑏7 =  𝑦
0,𝑗

⊕  𝑦
1,𝑗

⊕ 𝑦
7,𝑗

; 

--LUT 𝒃𝟏 − 𝒃𝟐 

𝑏1 =  𝑦
0,𝑗

⊕  𝑦
1,𝑗

⊕ 𝑦
2,𝑗

⊕ 𝑦
3,𝑗

; 

𝑏2 =  𝑦
0,𝑗

⊕  𝑦
1,𝑗

⊕ 𝑦
2,𝑗

⊕ 𝑦
3,𝑗

⊕ 𝑦
4,𝑗

; 
--LUT 𝒃𝟑 

𝑏3 =  𝑦
0,𝑗

⊕  𝑦
3,𝑗

⊕ 𝑦
4,𝑗

⊕ 𝑦
5,𝑗

; 

--LUT 𝒃𝟒 

𝑏4 =  𝑦
1,𝑗

⊕  𝑦
4,𝑗

⊕ 𝑦
5,𝑗

⊕ 𝑦
6,𝑗

; 

--LUT 𝒃𝟓 − 𝒃𝟔 

𝑏5 =  𝑦
0,𝑗

⊕  𝑦
1,𝑗

⊕ 𝑦
5,𝑗

⊕ 𝑦
6,𝑗

⊕ 𝑦
7,𝑗

; 

𝑏6 =  𝑦
0,𝑗

⊕  𝑦
6,𝑗

⊕ 𝑦
7,𝑗

; 

Return (B=  𝑏7 & 𝑏6& 𝑏5 & 𝑏4 & 𝑏3 & 𝑏2& 𝑏1 & 𝑏0) 

 

 

Fig. 3 LUT6 and LUT6_2 
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   The pipeline and parallel techniques are used to 
improve the time delay and the speed performance of 
the proposed design with the minimum number of gate 
levels.  Referring to Fig. 4 and Fig. 5 of A-module and 
B-module, the internal LUT of each sub-module is 
processed in parallel to decrease the delay time of the 
proposed design. Similarly, all sub-modules A and B 
are processed in parallel in the main MDS module. The 
pipeline technique is utilized in dividing the hole 
process into two stages, the first stage is calculating the 
result of all sub-modules, the second stage is the 
Addition process.  The pipeline is utilized also 
internally for each sub-module in dividing the input 

byte, 𝑌𝑗, into bits, 𝑦
7,𝑗

, … , 𝑦
0,𝑗

, and processing it 

simultaneously to decrease the output delay time of 
each sub-module. In order to add the result of the sub-
modules; 32 LUTs as XOR logics have been used, 
Algorith-3. Fig. 6 shows the top-level block of the 
MDS module proposed design, and the RTL schematic 
is shown in Fig. 7.  

Algorithm-3 Modified MDS Module 

Input: 𝑌0, 𝑌1, 𝑌2, 𝑌3 .[ 𝐅𝐨𝐮𝐫 − 𝐁𝐲𝐭𝐞𝐬]  
Output: 𝑀𝐷𝑆_𝑂𝑈𝑇 [ 𝐅𝐨𝐮𝐫 − 𝐁𝐲𝐭𝐞𝐬] 
1-      𝑨𝟎 = 𝒀𝟎  → 𝑨; 

         𝑨𝟏 = 𝒀𝟏  → 𝑨; 

         𝑨𝟐 = 𝒀𝟐  → 𝑨; 

         𝑨𝟑 = 𝒀𝟑  → 𝑨; 

         𝑩𝟎 = 𝒀𝟎  → 𝑩; 

         𝑩𝟏 = 𝒀𝟏  → 𝑩; 

         𝑩𝟐 = 𝒀𝟐  → 𝑩; 

         𝑩𝟑 = 𝒀𝟑  → 𝑩; 

2-     𝒁𝟎 =  𝑌0  ⊕ 𝐵1 ⊕ 𝐴2  ⊕ 𝐴3; 

        𝒁𝟏 =  𝑌3  ⊕ 𝐵1 ⊕  𝐴0  ⊕ 𝐵2; 

        𝒁𝟐 =  𝑌2  ⊕ 𝐵0 ⊕  𝐴1  ⊕ 𝐵3; 

        𝒁𝟑 =  𝑌1  ⊕ 𝐵0 ⊕ 𝐴3  ⊕ 𝐵2; 
Return (𝑀𝐷𝑆_𝑂𝑈𝑇 =  𝒁𝟑 &𝒁𝟐&𝒁𝟏&𝒁𝟎) 

 

 

Fig. 6 Top-level block of MDS module  

 

 

Fig. 7 RTL schematic of Proposed MDS module 

 

 

Fig. 4 RTL schematic of A- module 

 

Fig. 5 RTL schematic of B-module 
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5. TESTS AND RESULTS 

5.1    SIMULATION RESULTS 

  The verification of the proposed MDS design was 
proved by testing the g-function, Fig. 8. The g-function 
is the heart of Twofish. The input 𝑅0 is divided into 
four bytes, each byte runs through its own key-
dependent S-box. The S-boxes are described using 
VHDL and appended to the MDS proposed design to 
construct the g-function. Each S- box is bijective; takes 
one byte of input and produces one byte of output. The 
four bytes,𝑌1 … 𝑌4 , are multiplied by the proposed 
design of MDS matrix. The resulting vector 𝑇0 is 
interpreted as a 32-bit word which is the result of g-
function. 

 

    The simulation tool is ModelSim-SE-10.5. Table I 
introduces four different  test vectors used in proving 
the validity of the proposed design [3]. 𝑆0 and 𝑆1  are 
forced to “0000000016”. As shown in Fig. 9; the 
output results 𝑇0 are typical as its corresponding input 
𝑅0 in Table I. 

    The simulation results in Fig. 9 presents the output 
result of inputting four different inputs to the g - 
function. There is a simultaneous output 𝑅0 for each 
input 𝑇0. As a result, the proposed design can accept 
any change in input and computes its correct 
corresponding output, that proves the correctness of the 
functionality of the proposed design of the MDS 
matrix.   

5.2 SYNTHESIS AND COMPARISON RESULTS 

The hardware implementation of Twofish algorithm 

was demonstrated in [16,19]. The implementation of 

the Twofish encryption algorithm on FPGA has been 

treated in a number of articles in order to increase the 

speed of their proposed designs; decrease the time 

delay needed to process the input signals, or to 

decrease the area of its modules [13,14,20–24]. There 

is a tradeoff in the hardware implementation between 

the speed and area. The aim of the proposed design is 

not only to minimize the occupied area of the 

hardware implementation; but also, to increase the 

speed, and to enforce the maximum combinational 

path delay to be stable. The speed performance has 

been improved by using the pipeline and parallel 

techniques for the proposed design of the Twofish-

MDS module. To minimize the area of the proposed 

module, the  𝐿𝑈𝑇6 and 𝐿𝑈𝑇6 − 2 primitives of the 25 

nm Xilinx FPGA, the 7-Series, have been utilized. The 

targeted device for the implementation is Virtex-7 

xc7vx330t-3ffg1157. Table II shows the comparison 

results of the hardware implementation of the 

proposed design and the other related works of MDS 

matrix over 𝐺𝐹(28). The comparison in terms of the 

occupied area measured in number of LUTs, the delay 

in 𝑛𝑠, the maximum frequency in MHz, and the 

throughput in Gbps. For fairness in comparison, it has 

been established among the related works with same 

4 × 4 MDS matrix, the same elements, and over the 

same Finite Field.  

TABLE I.  TEST VECTORS OF G-FUNCTION 

32-bit Input 
𝑹𝟎 

32-bit Output 
𝑻𝟎 

52𝐶54𝐷𝐷𝐸16 𝐶06𝐷494916 

𝐶38𝐷𝐶𝐴𝐴416 7𝐶4536𝐵916 

55𝐴538𝐷𝐸16 60𝐷𝐴𝐶1𝐴416 

899063𝐵𝐷16 607𝐴𝐴𝐸𝐴𝐷16 

 

 

Fig. 8 g-Function of the Twofish Algorithm 

 

Fig. 9 simulation results of g-function block inputs and outputs 
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Referring to Table II, the hardware area of the 

proposed design on FPGA is the lightest occupied area 

among other related works.  The area of the proposed 

design is only 68 LUTs, this number of LUTs is 

exactly as targeted to be in the proposed design. The 

cost of the area implementation of the proposed design 

is less than 66% of the area of the other comparative 

works, and the maximum path time delay is also the 

least among others. The proposed design Maximum 

frequency is 661.318 MHz with throughput of 21.178 

Gbps. 

6. CONCLUSION  

This paper presents an efficient implementation of 
the MDS matrix. The MDS matrix was divided into 
modules internally constructed in parallel utilizing the 
pipeline technique to decrease the delay of the 
proposed design and enhance its maximum frequency.  
Xilinx primitives 𝐿𝑈𝑇6 and 𝐿𝑈𝑇6 − 2 were utilized in 
the proposed design to control exactly the placement of 
components and to guarantee the minimum occupation 
area. The verification of the proposed design was 
proved using ModelSim tool. The proposed design was 
implemented on Xilinx Virtex-7 FPGA. The area of the 
proposed design is only 68 LUTs. The synthesizes 
results comparing with other related designs show that 
the proposed design has the least area, furthermore the 
smallest maximum path time delay; with maximum 
frequency of 661.318 MHz, and high throughput of 
21.178 Gbps. The proposed design is a suitable 
candidate for lightweight cryptographic 
implementation.  
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 تنفيذ فعال لمصفوفة المسافة الفاصلة القصوى على شريحة المصفوفات القابلة للبرمجة حقليا

   الملخص

القصوى"   الفاصلة  المسافة  دراسة "مصفوفة  فإن  الحديثة،  الآونة  اهتمام.    MDSفي  ذا  في طبقة   MDSأصبح موضوع  مكون  أهم  هي 

MDS  𝐺𝐹(28)  4الانتشار في التشفير الكتلي. هذا المقال يقدم مصفوفة   × التصميم المقترح على     4 مثالية ذات حجم صغير. تم تطبيق 

  LUT6ات  . تم استخدام تصميمXilinxباستخدام برامج شركة   Virtex-7مصفوفات البوابات المبرمجة حقليا. التنفيذ للتصميم المقترح يستهدف  

للتحكم بشكل دقيق في موقع كل مكون من التصميم المقترح للحصول على أصغر مساحة ممكنة. تم    Xilinxالخاصة بشركة   LUT6-2 و

برنامج  باستخدام  المقترح  بالتصميم  الخاص  الأداء  من  التحقق  تم  السرعة.  لتحسين  المتوازي  والتصميم  بالتجزئة  التنفيذ  طريقة  استخدام 

Modelsim   .  إن نتائج التوليف وضحت أن المساحة المشغولة للتصميم المقترح يقدم نتائج تنافسية في المساحة والإنتاجية. بالمقارنة بالتصميمات

،   LUT  68المماثلة السابقة، التصميم المقترح يشغل أقل مساحة وأقل زمن للإنتاجية. المساحة المشغولة للتصميم المقترح قلت بشكل ملحوظ،  

  جيجا بت في الثانية الواحدة. التصميم المقترح مرشح مناسب لتطبيقات التشفير ذات الحجم الصغير.  21.178إنتاجية مع معدل 

 


