Journal of Advanced
Engineering Trends

Vol.40, No.2. July 2021

ISSN : 2652 -2091

http://jaet.journals.ekb.eg

EFFICIENT IMPLEMENTATION OF LIGHTWEIGHT MDS MATRIX ON
FPGA

Ahmed A.H. Abd-Elkader *, Mostafa Rashdan 2, EI-Sayed A.M. Hasaneen 3,
Hesham F.A. Hamed #°

! Qussier Telecom, Telecom Egypt, Red Sea, Egypt
2 Faculty of Energy Engineering, Aswan University, Aswan, Egypt
3 Faculty of Engineering, Aswan University, Aswan, Egypt
4 Faculty of Engineering, Minia University, Minia, Egypt
® Faculty of Engineering, Egyptian - Russian University, Cairo, Egypt
* corresponding author E-mail: eng.ahmed a abdelkader@yahoo.com

ABSTRACT

Recently, studying of Maximum Distance Separable (MDS) matrix has become a topic of interest. The MDS matrix
is the most important component of the diffusion layer in block ciphers. This paper introduces an optimized, low-cost
hardware construction of Galois Field GF(28) 4 x 4 MDS matrix. The proposed design is implemented on Field
programmable Gate Array (FPGA). The proposed design is synthesized targeting Virtex-7 FPGA using Xilinx ISE
Design suite. Xilinx primitives LUT6 and LUT6_2 were used to control exactly the component placement in the design
to maintain the minimum occupation area. The pipeline and parallel implementation techniques were used to improve
the speed performance. The verification of the functionality of the proposed design has been proved using the
ModelSim simulation tool. The synthesis result of the proposed design shows that, the new proposed architecture
provides very competitive area and throughput trade-offs. In comparison with other related designs, the proposed
design occupies the least area with the minimum time delay. The area of the developed MDS matrix design was
significantly reduced, 68 LUT, with high throughput of 21.178 Gbps. The proposed design is a suitable candidate for
lightweight cryptographic implementations.

Keywords—MDS, FPGA, Xilinx, Virtex-7, LUT6, Lightweight.

matrices. The MDS is used also in Feistel Ciphers such

1. INTRODUCTION as Twofish [3]. The increasing of the smaller personal

In the information technology era; the private devices in the past decade to manage secure data has
information has to be protected from hackers and third- encouraged the investigation of modern cryptographic
parties, furthermore, protecting financial transactions, primitives with low-cost area. That urge required a
military and industrial secrets from adversaries. novel lightweight cryptographic hardware
Cryptography was used in ancient ages, it was known implementation. Many studies of MDS codes have
as encryption, to transfer messages in secret ways by been performed, such as classification of MDS codes
converting it from readable state to unreadable sense. [4,5], non-Reed-Solomon MDS codes [6], Recursive
Cryptography supplies mechanisms, techniques, and construction of MDS matrix [7,8], Irregular MDS
tools for confidential and authenticated Array [9] ; and lightweight MDS matrices [10-12].

communication, and for accomplishing secure and
authenticated transformations over the Internet and
other networks. The modern cryptography ciphering
and deciphering systems are composed of sets of
complicated mathematical algorithms together with
key management procedures to make it hard to break
by any third-parties [1]. The Substitution-Permutation
Networks (SPN) have a well-known structure to
construct the Symmetric-key ciphers such as AES [2].
The main components of SPN are diffusion matrices,
S-boxes, and key schedule. Maximum Distance
Separable (MDS) matrix is used as the diffusion

The low-cost MDS is used also in lightweight block
cipher [13,14]. There are two focal approaches towards
lightweight MDS matrices. The first approach looks
for new matrices that permit a good implementation by
design. The second approach, deal with a given MDS
matrix and lower its cost by finding a better
implementation. The second approach is used to
optimize the implementation of a standardized cipher.
This paper is based on the second approach in
designing of a lightweight MDS matrix. We mostly
focus on the cost of a hardware implementation of
MDS matrix. The MDS of block cipher Twofish is
chosen to be optimized and synthesized as an example
Received:14July, 2020, Accepted:31July, 2020 of 4_by_4 MDS matrix in GF(ZS) [3]

149

http://jaet.journals.ekb.eg/
mailto:eng.ahmed_a_abdelkader@yahoo.com

Vol.40, No.2. July 2021

Field Programmable Gate Array (FPGA) is an
excellent choice for implementation of algorithms
which need the benefits of the flexibility of software
platforms, and the speed of the Very Large-Scale
Integrated Circuits (VLSI), furthermore, the timeless
of implementation and development. Due to its
reconfigurability and other benefits; Xilinx FPGA was
chosen to implement the proposed MDS module. The
area of Xilinx FPGA is measured with the number of
Look Up Tables (LUT), and the delay is measured in
ns . The Xilinx instantiation primitives Lookup Table
(LUT) have been used [15], LUT6 and LUT6_2 ,these
components are instantiated directly into the design to
control the exact placement of the individual blocks.

The remainder of the paper is organized as follows.
Section 2 demonstrates in brief the construction of
Twofish algorithm and its main blocks. Section 3
presents the MDS matrix and its functions. Section 4
describes the implementation of the proposed design.
Section 5 presents the simulation and synthesis results.
Finally, section 6 concludes this work.

2. OVERVIEW OF TWOFISH ALGORITHM

Twofish is a symmetric key block cipher accepts a
variable key size up to 256 bits and a block size of 128
bits. At the Advanced Encryption Standard (AES)
contest; Twofish was one of the five contestants. The
algorithm of the cipher is a 16-round Feistel network.
The bijective F function made up of four pre-
computed key- dependent 8-by-8- bit S-boxes, a fixed
4-by-4 maximum distance separable matrix (MDS)
over GF (2%), bitwise rotations , a pseudo-Hadamard
transform (PHT), and a relatively complex key
schedule. In Twofish there are two 1-bit rotations
which are non-Feistel elements. The structure of the
Twofish algorithm is shown in Fig. 1.

The Feistel network is used for converting any
function, called F-function, into a permutation [16].
The 16-bytes input plaintext py, ..., p15 , 128-bit block
size, are split into four 32-bit words P,, ..., P; using
little-endian conversion (1), [3].

P, =i, pl(4i+l)'28l £=0,..,3 @)

Py, ..., P; , plaintext 32-bit words, are XORed with
four 32-bit expanded key words, k;, in input whitening

process (2). R; is the output of whiting process.
R; = P, XOR k; i=0,.,3 (2)

Afterwards, there are sixteen rounds; in each of
them the two 32-bit words R, and R; are used as an
input to the F function, R, and R; are XORed with the
output of F function. R; are rotated left by one-bit
before the XOR procedure, and R, are rotated right by
one-bit after the XOR procedure (3).

150

[Plain-text (128-bi1) |

E’.: o Ej: m
o ey [g Be B0 | i,

MOS

one Rouni

1
1
1
1
1
1
i
1
32-it 32-hit : ! 53
1
1
1
1
1
1
1
1
1

»
i
i
1
1
1
} it 32t
i
1
i
1
1
1
1
]

15 mare
Rounds

Undo
Lastswa

Output
" K 16 7 Whitenin

[Cipher-text (128-b1t) |

Fig. 1. Twofish algorithm structure

Rore1 = ROR(RZ,r D For, 1)
Ryy41 = ROL(R3,, 1) ®F,, r=0,..,15 (3)

r is denoted for the round turn. Finally, the two
halves are swapped for the next round (4).

Ryr+1 = Ror
R3ri1 =Ry 4)
The swap of round 15 is reversed, the output
Ro16, R116. R216 and Rs,, are XORed with the
corresponding 32-bit expanded keys in the output
whitening process (5).

Ci = Ri+2ymoda 416 @ kiva 1=0,..,3 (5)

Subsequently, the four 32-bit words are divided

into sixteen 8-bit words c,, ..., ¢;5 via the same Little-
endian conversion method used for the plain text (6).

Cis
= | moa2s =015 (@

28(s mod 4)

s is denoted for the byte order of the cipher text.
As shown in Fig. 1, the F-function is 64-bit key-
dependent permutation function, consists of four main
blocks; two g-Function, PHT, 8-bit rotate left block for
the R, and two 32-bit adders modulo 232. There are
three inputs to the F-function R,, R, and r the round
number. The g-function is the most important block in
Twofish algorithm, each input byte is processed
through its key-dependent bijective S-boxes;
subsequently, the outputs are formed as a vector of
length 4 over GF(28), and multiplied by 4 x 4 MDS

Vol.40, No.2. July 2021

matrix. The output of MDS matrix is a vector of 32-bit
word.

The g function is composed of four key dependent
S-boxes followed by MDS. T, and T, are the outputs
of g-functions (7), and the input to PHT; the two
modulo 232 adders.

To = g(Ro)
T, = g (ROL (R,,8)) (7

where ROL is the function that rotates their first
argument (a 32-bit word) left by the number of bits
indicated by their second argument. The results of F-
function are 32-bit F, and F; (8).

FO = (TO + TI + k2r+8) mOd 232
F1 = (TO + ZT]_ + k2r+9) mod 232 (8)

The Twofish key schedule provides 40 expanded
keys ky, ... ,kso. Eight expanded keys for whitening
process and 32 expanded keys for 16 rounds, in
addition to two subkeys S, and S, as the inputs to the
g-function. The Twofish accepts keys of length 128-
bit, 192-bit, and 256-bit.

3. MAXIMUM DISTANCE SEPERABLE (MDS)

An MDS matrix is a matrix that describes a
function with certain diffusion properties that have
useful cryptographic applications. The codes are
provided specifically over finite fields with powerful
algorithms for encoding and decoding.[3,16]. MDS
represents the main diffusion procedure for the S-box
output. The 32-bit word input to the g-function is
divided into four bytes; each byte represents the input
to its corresponding bijective S-box. The output of the
S-box is a vector of four bytes Yy, ..., Y5, the output is
multiplied by 4 x 4 MDS matrix over GF(2®); as
shown in (9); [17].

2 Yo
Zq ') Y1
z | =1: MDS : Y2 9)
Z3 Y

A primitive polynomial with degree 8 over GF (2)

is used; the polynomial and the hexadecimal
representation are shown in (10).
p(x) = x84+ x°+ x°+ x3+1=(169);5 (10)
The MDS matrix is:
01 EF 5B 5B
wos= (2 % T) ap
EF 01 EF 5B

The diffusion mechanism of MDS guaranteed that;
any change in input byte will followed by changing the
output bytes.

151

4. IMPLEMENTATION OF MDS MODULE

This section presents the multiplication of MDS
matrix in GF (2®) , converting its polynomial form into
binary form, and minimizing the cost of the hardware
implementation of the proposed design.

4.1 CONVERTING MDS MATRIX INTO BINARY
FORM

The MDS module is repeated four times in the
same round, twice for the g-function and twice for the
h-function in key schedule; as shown in Fig. 2, [3].
The h function generates the subkeys in Twofish,
which can be presented as four key-dependent S-boxes
followed by an MDS matrix [3]. Therefore, the main
purpose of this article is to provide an improved
hardware design of the MDS module for Twofish
algorithm without increasing its time delay. Xilinx
FPGA used to implement the proposed design. The
following equation (12) of the MDS matrix output can
be deduced from (9) and (11).

Zy = Y0+ Yl.EF+ YZ.5B+ Y3.5B
Zy = Yo.SB + Yl.EF+ YZ.EF+Y3
Zz = Yo.EF + Yl.SB + YZ + Y3.EF

Yo.EF + Y, + Y,.EF +Y;.5B (12)

Every single multiplication operation in (12) is
performed using polynomial mathematics over
GF (28), with the primitive polynomial p(x) = 169,
as shown in (10). In the polynomial arithmetic the
addition is just XOR operation. Referring to (10) and
(12), there are mainly two modular multiplication
operations (13).

Z3 =

Fig. 2 MDS module in one round

Vol.40, No.2. July 2021

A= (Y;.5B;5)mod 1694
B=(Y;.EF;s)mod 169, j =0,.. ,3 (13)

Y; is one input byte and the only unknown in (13).
Therefore, MATLAB was used to deduce the lookup
tables of 256-bytes for each modular multiplication
operation of A and B. The outputs of the two lookup
tables are minimized, and the resulted outputs are A =
a;,ag, ... ,ay, and B = by, ... ,by. The algorithms
for modules A and B are demonstrated in Algorithm-1
and Algorithm-2 respectively. The four-input bytes of
the MDS module are represented by:

Yi = ¥7, Y6, 1Yo, -

Algorithm-1 MDS A-Module

Input: Y; = ¥7 5, Y j» -+, Yo,j -[one — Byte].
Output: A = (Y] 5316)m0d 169 .[one — Byte].
--LUT ay—Qa

a() = yOJ @ yzl]';
a, = yll]- ® yzl]- ® 3’4,]-;
--LUT a; —asz

al = y(]']'e9 y1'j®y3,j;
a3 = y(]']'e9 y3'j®y5,j;

-LUT a4 — a4

a =y, &y, Oy, Oy,
s = Yo; D Vo0

-LUT a5 — a,

as =y, D y;, Oy,

a; =y, D v, ;

Return (A = a, & ags&as & a, &as; &a,& a; & ay)

Algorithm-2 MDS B-Module

Input: Y; = ¥7 1, ¥6js ---» Yo, -| one — Byte]
Output: B = (Y;.EF16)mod 16916 .| one — Byte]

—LUT by — b,

bO = yO,j @ yl,j @ yZ,j;

b7 = yo'j @ yl'j @ y7'j;

~LUT by — b,

bl = yO,j @ yl'j @ yzyj @ y3'j;

by=9,; @y, @y, @y, By,

~LUT bs

b3 = yO’j @ }’3‘]- @ .’V4’j @ yS,j;

~LUT b,

b4 = yl.j @ y4’j @ yS’j @)’6_]-;

—LUT bs — by

bS = yO,j @ ylij @ yS’j @ y6'j @)’7‘],

b6 = yO,j @ y6’j @}’7,];

Return (B= b7 & bﬁ& bs & b4 & b3 & bz& bl & bo)

152

4.2 OPTIMIZATION OF MDS SUB-MODULES

Some techniques have been applied to optimize the
area of the proposed design. Referring to Algorithm-1
and Algorithm-2, there are 14 XOR operations are
required in A module, and there are 23 XOR
operations are required in B module. Each XOR
operation needs one LUT, then, there are 37 LUTs are
required. Therefore, more optimization is needed. The
cost of the implementation can be decreased by
decreasing the number of LUTs, the available
primitives of the FPGA can be utilized. Fig. 3 shows
the LUT6 and LUT6 —2 block diagrams, it is
available in Xilinx 7-series and also in Spartan-6
FPGA [18]. Thus, the available primitives of the
Xilinx FPGA have been used to control the exact
placement of individual LUTS.

5 LUT6 s | LuTs_2
M “
L [T 1 06
=] o o = | O
2 —
sf | : =
3 2 1
12 —
]]
" :; LuTs Ll 5l 05
n 3
2
B o [
i
L = L [
Arvpues [aotces]

6-Input Look-Up Table 6-Input Look-Up Table

Fig. 3 LUT6 and LUT6_2

LUT6 — 2 can produce two bits of sub-module
output instead of one in regular LUT, each two semi-
similar output bits of sub-module have been utilized to
be the two outputs of single LUT6 — 2. Therefore, the
A-module has become only 4 LUTSs; instead of 14
LUTs. The B-module has become only 5 LUTS;
instead of 23 LUTSs. The output function for each LUT
of A-module and B-module is shown in Algorithm-1
and Algorithm-2 respectively.

4.3 IMPLEMENTATION OF THE PROPOSED DESIGN
ON FPGA

The proposed hardware design of MDS matrix has
been described using Schematic design tool in Project
Navigator of Xilinx ISE-14.4; utilizing the primitives
LUT6 and LUT6_2 of the Virtex-7 FPGA. Referring to
(12), twelve A and B sub-modules are needed to
construct the MDS module, nonetheless, only four A
sub-modules and four B sub-modules are required in
the proposed design. The algorithm of the proposed
MDS module is shown in Algorithm-3. The
implementations of A-module and B-module are
shown in Fig. 4 and Fig. 5 respectively.

Vol.40, No.2. July 2021

Algorithm-3 Modified MDS Module

Input: Yy, Y;,Y,,Y; .[Four — Bytes]
Output: MDS_OUT [Four — Bytes]

1- A():Y() —)A,
A1=Y1 —)A,
A2=Y2 —)A,
A3=Y3 —)A,
BozyO —>B,
Blzyl —>B,
BzzyZ —>B,
B3=Y3 —>B,

2- Zy=Y, @D B1 D 4, © A3
Z;=Y; ® B1 D 4¢ @ By;
Z;=Y, ® Bo® 41 @ Bs;
Z;3=Y, @ Bo® A3 © By;

Return (MDS_OUT = Zg &ZZ&Zl&ZO)

utg_2

P4 (7:0)

o
<t

7T

1111

Y; (7:0)

az2_a0

luts_2

FHTLE
13

T111

a3 al

luté_2

T
7

T11T

ab_ad

ut6_2

<ty
-

LI

Fig. 4 RTL schematic of A- module

uts_2
i : ~—H{l B (7:0)
L [o]
(7O
b0_b7
utd_2
- e e

. =<t

>
b1_b2
uts

—

[o
b3
utd

- —

I

g bé
uts_2

—

iy
> =
b5_b8

Fig. 5 RTL schematic of B-module

153

The pipeline and parallel techniques are used to
improve the time delay and the speed performance of
the proposed design with the minimum number of gate
levels. Referring to Fig. 4 and Fig. 5 of A-module and
B-module, the internal LUT of each sub-module is
processed in parallel to decrease the delay time of the
proposed design. Similarly, all sub-modules A and B
are processed in parallel in the main MDS module. The
pipeline technique is utilized in dividing the hole
process into two stages, the first stage is calculating the
result of all sub-modules, the second stage is the
Addition process. The pipeline is utilized also
internally for each sub-module in dividing the input
byte, Y;, into bits, Y=Y and processing it

simultaneously to decrease the output delay time of
each sub-module. In order to add the result of the sub-
modules; 32 LUTs as XOR logics have been used,
Algorith-3. Fig. 6 shows the top-level block of the
MDS module proposed design, and the RTL schematic
is shown in Fig. 7.

| 4

Y0(7.0) ‘ MDS_OUT(31:0)

Y1(7:0)
Y2(7:0)

Y3(7:0)

Fig. 6 Top-level block of MDS module

=
=
g

BN IF IR
o MDS_OUT(31:0)

]

Y1070
304)

#
18
"
8
g

g..
i ' s

Fig. 7 RTL schematic of Proposed MDS module

Vol.40, No.2. July 2021

5. TESTS AND RESULTS

5.1 SIMULATION RESULTS

The verification of the proposed MDS design was
proved by testing the g-function, Fig. 8. The g-function
is the heart of Twofish. The input R, is divided into
four bytes, each byte runs through its own key-
dependent S-box. The S-boxes are described using
VHDL and appended to the MDS proposed design to
construct the g-function. Each S- box is bijective; takes
one byte of input and produces one byte of output. The
four bytes)Y; ...Y, , are multiplied by the proposed
design of MDS matrix. The resulting vector T, is
interpreted as a 32-bit word which is the result of g-
function.

Proposed MDS_OuUT

| MDs To

Fig. 8 g-Function of the Twofish Algorithm

The simulation tool is ModelSim-SE-10.5. Table |
introduces four different test vectors used in proving
the validity of the proposed design [3]. S, and S; are
forced to “00000000,4”. As shown in Fig. 9; the
output results T, are typical as its corresponding input
Ry inTable 1.

The simulation results in Fig. 9 presents the output
result of inputting four different inputs to the g -
function. There is a simultaneous output R, for each
input T,. As a result, the proposed design can accept
any change in input and computes its correct
corresponding output, that proves the correctness of the
functionality of the proposed design of the MDS
matrix.

32h00000000

32h00000000

TABLE I. TEST VECTORS OF G-FUNCTION
32-bit Input 32-bit Output
Ry Ty
52C54DDE¢ €06D4949,4
C38DCAA4 7C4536B9;4
55A538DE ¢ 60DAC1A4,,
899063BD;¢ 607AAEAD, 4

5.2 SYNTHESIS AND COMPARISON RESULTS

The hardware implementation of Twofish algorithm
was demonstrated in [16,19]. The implementation of
the Twofish encryption algorithm on FPGA has been
treated in a number of articles in order to increase the
speed of their proposed designs; decrease the time
delay needed to process the input signals, or to
decrease the area of its modules [13,14,20-24]. There
is a tradeoff in the hardware implementation between
the speed and area. The aim of the proposed design is
not only to minimize the occupied area of the
hardware implementation; but also, to increase the
speed, and to enforce the maximum combinational
path delay to be stable. The speed performance has
been improved by using the pipeline and parallel
techniques for the proposed design of the Twofish-
MDS module. To minimize the area of the proposed
module, the LUT6 and LUT6 — 2 primitives of the 25
nm Xilinx FPGA, the 7-Series, have been utilized. The
targeted device for the implementation is Virtex-7
xc7vx330t-3ffg1157. Table Il shows the comparison
results of the hardware implementation of the
proposed design and the other related works of MDS
matrix over GF(28). The comparison in terms of the
occupied area measured in number of LUTS, the delay
in ns, the maximum frequency in MHz, and the
throughput in Gbps. For fairness in comparison, it has
been established among the related works with same
4 X 4 MDS matrix, the same elements, and over the
same Finite Field.

3Zh7C4536R9

k 000
ii' 5]. J
B'. g out TO 3ZhE07AAEAD 37hC0aD

0.4ns

Cursor 1

Fig. 9 simulation results of g-function block inputs and outputs

154

Vol.40, No.2. July 2021

TABLEIl. COMPARISON OF THE SYNTHESIS RESULTS
MDS Design Finite Field Area Delay Max. Throughput FPGA
LUT ns Frequency Gbps
MHz
[22] GF(28)/169,4 102 9.615 104 3.328 Xilinx
[25] GF(28)/169;¢ 112 95 105.163 3.365 Xilinx
[26] GF(28)/169;¢ 185 4 250 8 Altera
[21] GF(28)/169,4 112 - - - Xilinx
[20] GF(28)/169;¢ - 13.706 72.960 2.334 Xilinx
Proposed Design GF(28)/169,4 68 1511 661.813 21.178 Xilinx
Referring to Table I, the hardware area of the " AES PBOPOS- 15 (199é3|)- nssification of neeud
proposed design on FPGA is the lightest occupied area 4] J.p. Pedersen, C. Dahl, Classification of pseudo-
among other related works. The area of the proposed ((3 gglc MDS codes, IEEE Trans. Inf. Tg%%%;’g
design is only 68 LUTSs, this number of LUTSs is https:)/doi.org/10.1109/18.75254. '
exactly as targeted to be in the proposed design. The [5] J.I. Kokkala, D.S. Krotov, P.R.J. Ostergard, On
cost of the area implementation of the proposed design }h$ Clasﬁgriwfication oglMDSZCO:dees, IEEBS 'Iérgg;
i) i nf. heory. — .
is less than 66% of Fhe area of the other co_mparatlve https://doi.org/10.11G9/TIT 2015.2488650.
works, and the maximum path time delay is also the .

i . [6] R.M. Roth, A. Lempel, A Construction of Non-
least among others. The proposed design Maximum Reed-Solomon Type MDS Codes, IEEE Trans.
frequency is 661.318 MHz with throughput of 21.178 Inf. Theory. 35 (1989) 655-657.
Gbps. https://doi.org/10.1109/18.30988.

[7] g/l ﬁaéagieg, M. Dacljlgpfilal_ian,I H. Ilylal%l Pk.
epehrdad, Recursive diffusion layers for bloc
6. CONCLUSION glp_heirls alnc(jj_hashsf%nctloEs, Lelslt. No't&zs _(f:olmptﬁ.
; iniant i ; ci. (Including Subser. Lect. Notes Artif. Intell.
This paper presents an efficient implementation of Lect. Notes B?oinformatics). 7549 LNCS (2012)
the MDS matrix. The MDS matrix was divided into 385-401. https://doi.org/10.1007/978-3-642-
modules internally constructed in parallel utilizing the 34047-5_22.
pipeline technique to decrease the delay of the [8] K.C. Gupta, S.K. Pandey, A. Venkateswarlu,
proposed design and enhance its maximum frequency. Towards a general construction of recursive MDS
Xilinx primitives LUT6 and LUT6 — 2 were utilized in diffusion layers, Des. Codes, Cryptogr. 82 (2017)
the proposed design to control exactly the placement of %Zgilg‘r’ hitps://doi.org/10.1007/510623-016-
components and to guarantee the minimum occupation ' .
area. The verification of the proposed design was [°] gb&genw?tﬁ' L,:'S\’,vglr' \%udriltrreggi?nrqtl)\(ﬂ)gs '?‘éré’l
proved using ModelSim tool. The proposed design was Commun. Lett. 23 019) 1909-1912.
implemented on Xilinx Virtex-7 FPGA. The area of the https://doi.org/10.1109/LCOMM.2019.2937778.
proposed design is only 68 LUTs. The synthesizes [10]D. Yin, Y. Gao, A new construction of

results comparing with other related designs show that
the proposed design has the least area, furthermore the
smallest maximum path time delay; with maximum
frequency of 661.318 MHz, and high throughput of
21.178 Gbps. The proposed design is a suitable
candidate for lightweight cryptographic
implementation.

REFERENCES

[1] C. Paar, J. Pelzl, L_Jnderstanding_Cr%/_?tp raphy,
Sgrlnger Berlin Heldelberg, Berlin, Heidelberg,
% 10. https://doi.org/10.1007/978-3-642-04101-

[2] J. Daemen, V. Rijmen, The Design of Rijndael,
Sgringer Berlin Heidelberg, Berlin, Heidelberg,
i 02. https://doi.org/10.1007/978-3-662-04722-

[3] B.Schneier, J. Kelsey, D. Whiting, D. Wagner, C.
Hall, Twofish: A 128-Bit Block Cipher, NIST

155

lightweight MDS matrices, 2017 3rd IEEE Int.
Conf. Comput. Commun. ICCC 2017. 2018-
Janua (2018 2560-2563.
gt7tps://d0|.org/10.1109/ ompComm.2017.83229

[11]C. Beierle, T. Kranz, G. Leander, Lightweight
Multiplication in GF(2"n) with Applications to
MDS Matrices, in: Springer Berlin Heidelberg,
2016: pp. 625-653. https://doi.org/10.1007/978-
3-662-53018-4_23.

[12]S.M. Sim, K. Khoo, F. Oggier, T. Peyrin,
Lightweight MDS involution matrices, Lect.
Notes Comput. Sci. (Including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics).
9054 62015; 471-493.
https://doi.org/10.1007/978-3-662-48116-5_23.

[13]R. Beaulieu, S. Treatman-Clark, D. Shors, B.
Weeks, J. Smith, L. Wingers, The SIMON and
SPECK lightweight block clPhers, Proc. - Des.
Autom. — Conf. 2015-Jul (2015).
https://doi.org/10.1145/2744769.2747946.

[14]J. Guo, T. Peyrin, A. Poschmann, M. Robshaw,
The LED block cipher, Lect. Notes Comput. Sci.

Vol.40, No.2. July 2021

(Including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics). 6917 LNCS (2011) 326—
84%.2 https://doi.org/10.1007/978-3-642-23951-

[15] X_ili_nx, Virtex-11 Libraries Guide for Schematic
Designs, | UG616(v14. (2013) 631.
www. Xilinx.com.

[16]J. Solomon, I. V Be, A StudX of Twofish
ggggrlthm, Int. J. Eng. Dev. Res. 4 (2016) 2321-

https://www.ijedr.org/papers/IJEDR1602023.pdf

[17]B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C.
Hall, N. Ferguson, Twofish: A 128-bit block
cipher, NIST AES Propos. 15 (1998).

[18]5(. Fpgas, Xilinx 7 Series FPGAs :, 405 (2012) 1-

[19] Yeong-Kang Lai, Liang-Gee Chen, Jian-Yi Lai,
Tai-Ming Parng, VLSI architecture design and
implementation for TWOFISH block cipher,
2002 IEEE Int. Symp. Circuits Syst. Proc. (Cat.
N0.02CH37353). 52002) 11-356-11-359.
https://doi.org/10.1109/ISCAS.2002.1010998.

[20]P. Gehlot, S. R. Biradar, B. P. Sinﬁh,
Implementation of Modified Twofish Algorithm
using 128 and 192-bit keys on VHDL, Int. J.
Comput. Aﬁ?" 70 (2013) 36-42.

https://doi.org/10.5120/12024-8087.

[21]A. Singh, Study of MDS Matrix used in Twofish
AES (Advanced Encryption Standard)
Algorithm and its VHDL Implementation, 1997.

[22] A. Singh, FPGA Implementation and Analysis of
DES and TWOFISH Encryption Algorithms,
THAPAR, 2010.

[23]1D. Smekal, J. Ha#nh/, Z. Martinasek, Hardware-
Accelerated Twofish Core for FPGA, 2018 41st
Int. Conf. Telecommun. Signal Process. TSP
2018. (2018) 1-5.
https://doi.org/10.1109/TSP.2018.8441386.

[24]C. De Canniére, O. Dunkelman, M. KnezZevic,
KATAN and KTANTAN - A family of small and
efficient hardware-oriented block ciphers, Lect.
Notes Comput. Sci. (Including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics).
5747 LNCS 2009) 272-288.
https://doi.org/10.1007/978-3-642-04138-9_20.

[25]M. De Clercq, V. Levesque, A VHDL
Implementation of the Twofish Block Cipher,
(1999).

[26]0. De Souza Martins Gomes, R.L. Moreno, A
compact 128-bits symmetric cryptograph
hardware module, Proc. 2016 8th Int. Conf. Inf.
Technol. Electr. En% Empower. Technol. Better
Futur. ICITE 2016. 2017).
https://doi.org/10.1109/ICITEED.2016.7863244.

156

Vol.40, No.2. July 2021

Lalia, daa ult ALY cild ghuaal) dag 3 o 5 guall) Alaldl) Addlucal) 48 ghuaal Jlad LAl
oadlall

Ak b o sSe aal 4 MDS plaial 13 ¢ s s zaal MDS "5 sail) dAlalill dilisall 48 siina 4l ja Gl (diaall 45531 b
Sl g Bl araadll Guki o jhea paa I3 A GF(28) 4 X 4 MDS 4 sias oty Jidll 13 SIS i) 3 lasy)
LUT6E lareai aladiad o8 Xilinx 48 _yd gl o alad5ulVirtex-7 <oagion = yiall avecaill 2wl Llia dae yudl bl gl ld siime
A A dalie pral Lo Jpanll 2 il aaail) (e s JS @B b @ JS8 Saill Xilinx 4S iy Aalall LUT6-2
b a2 i) araaily Galadl el (e @isdl 23 Ae jull Gaeadl g sl sl y A5l il 3Gyl aladil
Cilaparailly 4 aally Al 5 dalusall 8 Ll il o) = yiall pparaaill 4 il Aalusall O i g a6l 2305 o) Modelsim
A LUT el sale JS il = el aenatll 41 gaial) dalisall Al o3 Jil 5 dnlise Ji1 Jany 7 i) ppancail) Aliad) ALl
vall aaall Gl padall Glidadl Cuilie i e CJM‘ araaill 3aa) ol A St lan21.178 Al Jaea &

157

