

http://jaet.journals.ekb.eg

 149

Received:14July, 2020, Accepted:31July, 2020

EFFICIENT IMPLEMENTATION OF LIGHTWEIGHT MDS MATRIX ON

FPGA

ABSTRACT

Recently, studying of Maximum Distance Separable (MDS) matrix has become a topic of interest. The MDS matrix

is the most important component of the diffusion layer in block ciphers. This paper introduces an optimized, low-cost

hardware construction of Galois Field 𝐺𝐹(28) 4 × 4 MDS matrix. The proposed design is implemented on Field

programmable Gate Array (FPGA). The proposed design is synthesized targeting Virtex-7 FPGA using Xilinx ISE

Design suite. Xilinx primitives 𝐿𝑈𝑇6 and 𝐿𝑈𝑇6_2 were used to control exactly the component placement in the design

to maintain the minimum occupation area. The pipeline and parallel implementation techniques were used to improve

the speed performance. The verification of the functionality of the proposed design has been proved using the

ModelSim simulation tool. The synthesis result of the proposed design shows that, the new proposed architecture

provides very competitive area and throughput trade-offs. In comparison with other related designs, the proposed

design occupies the least area with the minimum time delay. The area of the developed MDS matrix design was

significantly reduced, 68 LUT, with high throughput of 21.178 Gbps. The proposed design is a suitable candidate for

lightweight cryptographic implementations.

Keywords—MDS, FPGA, Xilinx, Virtex-7, LUT6, Lightweight.

1. INTRODUCTION

In the information technology era; the private

information has to be protected from hackers and third-

parties, furthermore, protecting financial transactions,

military and industrial secrets from adversaries.

Cryptography was used in ancient ages, it was known

as encryption, to transfer messages in secret ways by

converting it from readable state to unreadable sense.

Cryptography supplies mechanisms, techniques, and

tools for confidential and authenticated

communication, and for accomplishing secure and

authenticated transformations over the Internet and

other networks. The modern cryptography ciphering

and deciphering systems are composed of sets of

complicated mathematical algorithms together with

key management procedures to make it hard to break

by any third-parties [1]. The Substitution-Permutation

Networks (SPN) have a well-known structure to

construct the Symmetric-key ciphers such as AES [2].

The main components of SPN are diffusion matrices,

S-boxes, and key schedule. Maximum Distance

Separable (MDS) matrix is used as the diffusion

matrices. The MDS is used also in Feistel Ciphers such

as Twofish [3]. The increasing of the smaller personal

devices in the past decade to manage secure data has

encouraged the investigation of modern cryptographic

primitives with low-cost area. That urge required a

novel lightweight cryptographic hardware

implementation. Many studies of MDS codes have

been performed, such as classification of MDS codes

[4,5], non-Reed-Solomon MDS codes [6], Recursive

construction of MDS matrix [7,8], Irregular MDS

Array [9] ; and lightweight MDS matrices [10–12].

 The low-cost MDS is used also in lightweight block

cipher [13,14]. There are two focal approaches towards

lightweight MDS matrices. The first approach looks

for new matrices that permit a good implementation by

design. The second approach, deal with a given MDS

matrix and lower its cost by finding a better

implementation. The second approach is used to

optimize the implementation of a standardized cipher.

This paper is based on the second approach in

designing of a lightweight MDS matrix. We mostly

focus on the cost of a hardware implementation of

MDS matrix. The MDS of block cipher Twofish is

chosen to be optimized and synthesized as an example

of 4-by-4 MDS matrix in 𝐺𝐹(28) [3].

Ahmed A.H. Abd-Elkader 1*, Mostafa Rashdan 2, El-Sayed A.M. Hasaneen 3,

Hesham F.A. Hamed 4,5

1 Qussier Telecom, Telecom Egypt, Red Sea, Egypt
2 Faculty of Energy Engineering, Aswan University, Aswan, Egypt

3 Faculty of Engineering, Aswan University, Aswan, Egypt
4 Faculty of Engineering, Minia University, Minia, Egypt

5 Faculty of Engineering, Egyptian - Russian University, Cairo, Egypt
* corresponding author E-mail: eng.ahmed_a_abdelkader@yahoo.com

http://jaet.journals.ekb.eg/
mailto:eng.ahmed_a_abdelkader@yahoo.com

Vol.40, No.2. July 2021

150

Field Programmable Gate Array (FPGA) is an

excellent choice for implementation of algorithms

which need the benefits of the flexibility of software

platforms, and the speed of the Very Large-Scale

Integrated Circuits (VLSI), furthermore, the timeless

of implementation and development. Due to its

reconfigurability and other benefits; Xilinx FPGA was

chosen to implement the proposed MDS module. The

area of Xilinx FPGA is measured with the number of

Look Up Tables (LUT), and the delay is measured in

𝑛𝑠 . The Xilinx instantiation primitives Lookup Table

(LUT) have been used [15], 𝐿𝑈𝑇6 and 𝐿𝑈𝑇6_2 ,these

components are instantiated directly into the design to

control the exact placement of the individual blocks.

 The remainder of the paper is organized as follows.

Section 2 demonstrates in brief the construction of

Twofish algorithm and its main blocks. Section 3

presents the MDS matrix and its functions. Section 4

describes the implementation of the proposed design.

Section 5 presents the simulation and synthesis results.

Finally, section 6 concludes this work.

2. OVERVIEW OF TWOFISH ALGORITHM

Twofish is a symmetric key block cipher accepts a

variable key size up to 256 bits and a block size of 128

bits. At the Advanced Encryption Standard (AES)

contest; Twofish was one of the five contestants. The

algorithm of the cipher is a 16-round Feistel network.

The bijective F function made up of four pre-

computed key- dependent 8-by-8- bit S-boxes, a fixed

4-by-4 maximum distance separable matrix (MDS)

over 𝐺𝐹(28), bitwise rotations , a pseudo-Hadamard

transform (PHT), and a relatively complex key

schedule. In Twofish there are two 1-bit rotations

which are non-Feistel elements. The structure of the

Twofish algorithm is shown in Fig. 1.

The Feistel network is used for converting any

function, called F-function, into a permutation [16].

The 16-bytes input plaintext 𝑝0, … , 𝑝15 , 128-bit block

size, are split into four 32-bit words 𝑃0, … , 𝑃3 using

little-endian conversion (1), [3].

 𝑃𝑖 = ∑ 𝑝𝑙 (4𝑖+𝑙). 28𝑙 𝑖 = 0,3
𝑙=0 … , 3 (1)

 𝑃0, … , 𝑃3 , plaintext 32-bit words, are XORed with

four 32-bit expanded key words, 𝑘𝑖 , in input whitening

process (2). 𝑅𝑖 is the output of whiting process.

𝑅𝑖 = 𝑃𝑖 𝑋𝑂𝑅 𝑘𝑖 𝑖 = 0, … ,3 (2)

Afterwards, there are sixteen rounds; in each of

them the two 32-bit words 𝑅0 and 𝑅1 are used as an

input to the 𝐹 function, 𝑅2 and 𝑅3 are XORed with the

output of 𝐹 function. 𝑅3 are rotated left by one-bit

before the XOR procedure, and 𝑅2 are rotated right by

one-bit after the XOR procedure (3).

𝑅0,𝑟+1 = 𝑅𝑂𝑅(𝑅2,𝑟 ⊕ 𝐹0,𝑟 , 1)

 𝑅1,𝑟+1 = 𝑅𝑂𝐿(𝑅3,𝑟 , 1) ⊕ 𝐹1,𝑟 𝑟 = 0, … , 15 (3)

𝑟 is denoted for the round turn. Finally, the two

halves are swapped for the next round (4).

𝑅2,𝑟+1 = 𝑅0,𝑟

 𝑅3,𝑟+1 = 𝑅1,𝑟 (4)

The swap of round 15 is reversed, the output
𝑅0,16, 𝑅1,16, 𝑅2,16, and 𝑅3,16 are XORed with the

corresponding 32-bit expanded keys in the output
whitening process (5).

 𝐶𝑖 = 𝑅(𝑖+2)𝑚𝑜𝑑 4,16 ⊕ 𝑘𝑖+4 𝑖 = 0, … ,3 (5)

Subsequently, the four 32-bit words are divided
into sixteen 8-bit words 𝑐0, … , 𝑐15 via the same Little-
endian conversion method used for the plain text (6).

 𝑐𝑠 = ⌊
𝐶⌊𝑠

4⁄ ⌋

28(𝑠 𝑚𝑜𝑑 4)⌋ 𝑚𝑜𝑑 28 𝑠 = 0, … , 15 (6)

𝑠 is denoted for the byte order of the cipher text.
As shown in Fig. 1, the F-function is 64-bit key-
dependent permutation function, consists of four main
blocks; two g-Function, PHT, 8-bit rotate left block for
the R, and two 32-bit adders modulo 232. There are
three inputs to the F-function 𝑅0, 𝑅1, and 𝑟 the round
number. The g-function is the most important block in
Twofish algorithm, each input byte is processed
through its key-dependent bijective S-boxes;
subsequently, the outputs are formed as a vector of
length 4 over 𝐺𝐹(28), and multiplied by 4 × 4 MDS

Fig. 1. Twofish algorithm structure

Vol.40, No.2. July 2021

151

matrix. The output of MDS matrix is a vector of 32-bit
word.

The 𝑔 function is composed of four key dependent
S-boxes followed by MDS. 𝑇0 and 𝑇1 are the outputs
of g-functions (7), and the input to PHT; the two
modulo 232 adders.

𝑇0 = 𝑔(𝑅0)

 𝑇1 = 𝑔 (𝑅𝑂𝐿 (𝑅0, 8)) (7)

where 𝑅𝑂𝐿 is the function that rotates their first
argument (a 32-bit word) left by the number of bits
indicated by their second argument. The results of F-
function are 32-bit 𝐹0 and 𝐹1 (8).

𝐹0 = (𝑇0 + 𝑇1 + 𝑘2𝑟+8) 𝑚𝑜𝑑 232

 𝐹1 = (𝑇0 + 2𝑇1 + 𝑘2𝑟+9) 𝑚𝑜𝑑 232 (8)

The Twofish key schedule provides 40 expanded
keys 𝑘0, … , 𝑘39. Eight expanded keys for whitening
process and 32 expanded keys for 16 rounds, in
addition to two subkeys 𝑆0 and 𝑆1 as the inputs to the
g-function. The Twofish accepts keys of length 128-
bit, 192-bit, and 256-bit.

3. MAXIMUM DISTANCE SEPERABLE (MDS)

An MDS matrix is a matrix that describes a

function with certain diffusion properties that have

useful cryptographic applications. The codes are

provided specifically over finite fields with powerful

algorithms for encoding and decoding.[3,16]. MDS

represents the main diffusion procedure for the S-box

output. The 32-bit word input to the g-function is

divided into four bytes; each byte represents the input

to its corresponding bijective S-box. The output of the

S-box is a vector of four bytes 𝑌0, … , 𝑌3, the output is

multiplied by 4 × 4 MDS matrix over 𝐺𝐹(28); as

shown in (9); [17].

 (

𝑧0
𝑧1
𝑧2
𝑧3

) = (

.
 …
 .

⋮ 𝑀𝐷𝑆 ⋮
.

 … .

) (

𝑌0
𝑌1
𝑌2
𝑌3

) (9)

A primitive polynomial with degree 8 over 𝐺𝐹(2)

is used; the polynomial and the hexadecimal

representation are shown in (10).

 𝑝(𝑥) = 𝑥8 + 𝑥6 + 𝑥5 + 𝑥3 + 1 = (169)16 (10)

The MDS matrix is:

 𝑀𝐷𝑆 = (
01 𝐸𝐹 5𝐵 5𝐵
5𝐵 𝐸𝐹 𝐸𝐹 01
𝐸𝐹 5𝐵 01 𝐸𝐹
𝐸𝐹 01 𝐸𝐹 5𝐵

) (11)

The diffusion mechanism of MDS guaranteed that;

any change in input byte will followed by changing the

output bytes.

4. IMPLEMENTATION OF MDS MODULE

This section presents the multiplication of MDS

matrix in 𝐺𝐹(28) , converting its polynomial form into

binary form, and minimizing the cost of the hardware

implementation of the proposed design.

4.1 CONVERTING MDS MATRIX INTO BINARY

FORM

 The MDS module is repeated four times in the

same round, twice for the g-function and twice for the

h-function in key schedule; as shown in Fig. 2, [3].

The h function generates the subkeys in Twofish,

which can be presented as four key-dependent S-boxes

followed by an MDS matrix [3]. Therefore, the main

purpose of this article is to provide an improved

hardware design of the MDS module for Twofish

algorithm without increasing its time delay. Xilinx

FPGA used to implement the proposed design. The

following equation (12) of the MDS matrix output can

be deduced from (9) and (11).

𝑧0 = 𝑌0 + 𝑌1. 𝐸𝐹 + 𝑌2. 5𝐵 + 𝑌3. 5𝐵

𝑧1 = 𝑌0. 5𝐵 + 𝑌1. 𝐸𝐹 + 𝑌2. 𝐸𝐹 + 𝑌3

𝑧2 = 𝑌0. 𝐸𝐹 + 𝑌1. 5𝐵 + 𝑌2 + 𝑌3. 𝐸𝐹

 𝑧3 = 𝑌0. 𝐸𝐹 + 𝑌1 + 𝑌2. 𝐸𝐹 + 𝑌3. 5𝐵 (12)

Every single multiplication operation in (12) is

performed using polynomial mathematics over

𝐺𝐹(28), with the primitive polynomial 𝑝(𝑥) = 16916,

as shown in (10). In the polynomial arithmetic the

addition is just XOR operation. Referring to (10) and

(12), there are mainly two modular multiplication

operations (13).

Fig. 2 MDS module in one round

Vol.40, No.2. July 2021

152

 A= (𝑌𝑗 . 5𝐵16)𝑚𝑜𝑑 16916

 B=(𝑌𝑗 . 𝐸𝐹16)𝑚𝑜𝑑 16916 𝑗 = 0, … , 3 (13)

 𝑌𝑗 is one input byte and the only unknown in (13).

Therefore, MATLAB was used to deduce the lookup

tables of 256-bytes for each modular multiplication

operation of 𝐴 and 𝐵. The outputs of the two lookup

tables are minimized, and the resulted outputs are 𝐴 =
 𝑎7, 𝑎6, … , 𝑎0, and 𝐵 = 𝑏7, … , 𝑏0. The algorithms

for modules A and B are demonstrated in Algorithm-1

and Algorithm-2 respectively. The four-input bytes of

the MDS module are represented by:

𝑌𝑗 = 𝑦7,𝑗 , 𝑦6,𝑗 , … , 𝑦0,𝑗 .

4.2 OPTIMIZATION OF MDS SUB-MODULES

Some techniques have been applied to optimize the

area of the proposed design. Referring to Algorithm-1

and Algorithm-2, there are 14 XOR operations are

required in A module, and there are 23 XOR

operations are required in B module. Each XOR

operation needs one LUT, then, there are 37 LUTs are

required. Therefore, more optimization is needed. The

cost of the implementation can be decreased by

decreasing the number of LUTs, the available

primitives of the FPGA can be utilized. Fig. 3 shows

the LUT6 and 𝐿𝑈𝑇6 − 2 block diagrams, it is

available in Xilinx 7-series and also in Spartan-6

FPGA [18]. Thus, the available primitives of the

Xilinx FPGA have been used to control the exact

placement of individual LUTs.

 𝐿𝑈𝑇6 − 2 can produce two bits of sub-module

output instead of one in regular 𝐿𝑈𝑇, each two semi-

similar output bits of sub-module have been utilized to

be the two outputs of single 𝐿𝑈𝑇6 − 2. Therefore, the

A-module has become only 4 LUTs; instead of 14

LUTs. The B-module has become only 5 LUTs;

instead of 23 LUTs. The output function for each 𝐿𝑈𝑇

of A-module and B-module is shown in Algorithm-1

and Algorithm-2 respectively.

4.3 IMPLEMENTATION OF THE PROPOSED DESIGN

ON FPGA

The proposed hardware design of MDS matrix has

been described using Schematic design tool in Project

Navigator of Xilinx ISE-14.4; utilizing the primitives

𝐿𝑈𝑇6 and 𝐿𝑈𝑇6_2 of the Virtex-7 FPGA. Referring to

(12), twelve A and B sub-modules are needed to

construct the MDS module, nonetheless, only four A

sub-modules and four B sub-modules are required in

the proposed design. The algorithm of the proposed

MDS module is shown in Algorithm-3. The

implementations of A-module and B-module are

shown in Fig. 4 and Fig. 5 respectively.

Algorithm-1 MDS A-Module

Input: 𝑌𝑗 = 𝑦7,𝑗 , 𝑦6,𝑗 , … , 𝑦0,𝑗 .[𝐨𝐧𝐞 − 𝐁𝐲𝐭𝐞].

Output: 𝐀 = (𝑌𝑗. 5𝐵16)𝑚𝑜𝑑 16916 .[𝐨𝐧𝐞 − 𝐁𝐲𝐭𝐞].

--LUT 𝒂𝟎 − 𝒂𝟐

𝑎0 = 𝑦
0,𝑗

⊕ 𝑦
2,𝑗

;

𝑎2 = 𝑦
1,𝑗

⊕ 𝑦
2,𝑗

⊕ 𝑦
4,𝑗

;
--LUT 𝒂𝟏 − 𝒂𝟑

𝑎1 = 𝑦
0,𝑗

⊕ 𝑦
1,𝑗

⊕ 𝑦
3,𝑗

;

𝑎3 = 𝑦
0,𝑗

⊕ 𝑦
3,𝑗

⊕ 𝑦
5,𝑗

;

--LUT 𝒂𝟒 − 𝒂𝟔

𝑎4 = 𝑦
0,𝑗

⊕ 𝑦
1,𝑗

⊕ 𝑦
4,𝑗

⊕ 𝑦
6,𝑗

;

𝑎6 = 𝑦
0,𝑗

⊕ 𝑦
6,𝑗

;

--LUT 𝒂𝟓 − 𝒂𝟕

𝑎5 = 𝑦
1,𝑗

⊕ 𝑦
5,𝑗

⊕ 𝑦
7,𝑗

;

𝑎7 = 𝑦
1,𝑗

⊕ 𝑦
7,𝑗

;

Return (𝐴 = 𝑎7 & 𝑎6& 𝑎5 & 𝑎4 & 𝑎3 & 𝑎2& 𝑎1 & 𝑎0)

Algorithm-2 MDS B-Module

Input: 𝑌𝑖 = 𝑦7,𝑗 , 𝑦6,𝑗, … , 𝑦0,𝑗 .[𝐨𝐧𝐞 − 𝐁𝐲𝐭𝐞]

Output: 𝐁 = (𝑌𝑗. 𝐸𝐹16)𝑚𝑜𝑑 16916 .[𝐨𝐧𝐞 − 𝐁𝐲𝐭𝐞]

--LUT 𝒃𝟎 − 𝒃𝟕

𝑏0 = 𝑦
0,𝑗

⊕ 𝑦
1,𝑗

⊕ 𝑦
2,𝑗

;

𝑏7 = 𝑦
0,𝑗

⊕ 𝑦
1,𝑗

⊕ 𝑦
7,𝑗

;

--LUT 𝒃𝟏 − 𝒃𝟐

𝑏1 = 𝑦
0,𝑗

⊕ 𝑦
1,𝑗

⊕ 𝑦
2,𝑗

⊕ 𝑦
3,𝑗

;

𝑏2 = 𝑦
0,𝑗

⊕ 𝑦
1,𝑗

⊕ 𝑦
2,𝑗

⊕ 𝑦
3,𝑗

⊕ 𝑦
4,𝑗

;
--LUT 𝒃𝟑

𝑏3 = 𝑦
0,𝑗

⊕ 𝑦
3,𝑗

⊕ 𝑦
4,𝑗

⊕ 𝑦
5,𝑗

;

--LUT 𝒃𝟒

𝑏4 = 𝑦
1,𝑗

⊕ 𝑦
4,𝑗

⊕ 𝑦
5,𝑗

⊕ 𝑦
6,𝑗

;

--LUT 𝒃𝟓 − 𝒃𝟔

𝑏5 = 𝑦
0,𝑗

⊕ 𝑦
1,𝑗

⊕ 𝑦
5,𝑗

⊕ 𝑦
6,𝑗

⊕ 𝑦
7,𝑗

;

𝑏6 = 𝑦
0,𝑗

⊕ 𝑦
6,𝑗

⊕ 𝑦
7,𝑗

;

Return (B= 𝑏7 & 𝑏6& 𝑏5 & 𝑏4 & 𝑏3 & 𝑏2& 𝑏1 & 𝑏0)

Fig. 3 LUT6 and LUT6_2

Vol.40, No.2. July 2021

153

 The pipeline and parallel techniques are used to
improve the time delay and the speed performance of
the proposed design with the minimum number of gate
levels. Referring to Fig. 4 and Fig. 5 of A-module and
B-module, the internal LUT of each sub-module is
processed in parallel to decrease the delay time of the
proposed design. Similarly, all sub-modules A and B
are processed in parallel in the main MDS module. The
pipeline technique is utilized in dividing the hole
process into two stages, the first stage is calculating the
result of all sub-modules, the second stage is the
Addition process. The pipeline is utilized also
internally for each sub-module in dividing the input

byte, 𝑌𝑗, into bits, 𝑦
7,𝑗

, … , 𝑦
0,𝑗

, and processing it

simultaneously to decrease the output delay time of
each sub-module. In order to add the result of the sub-
modules; 32 LUTs as XOR logics have been used,
Algorith-3. Fig. 6 shows the top-level block of the
MDS module proposed design, and the RTL schematic
is shown in Fig. 7.

Algorithm-3 Modified MDS Module

Input: 𝑌0, 𝑌1, 𝑌2, 𝑌3 .[𝐅𝐨𝐮𝐫 − 𝐁𝐲𝐭𝐞𝐬]
Output: 𝑀𝐷𝑆_𝑂𝑈𝑇 [𝐅𝐨𝐮𝐫 − 𝐁𝐲𝐭𝐞𝐬]
1- 𝑨𝟎 = 𝒀𝟎 → 𝑨;

 𝑨𝟏 = 𝒀𝟏 → 𝑨;

 𝑨𝟐 = 𝒀𝟐 → 𝑨;

 𝑨𝟑 = 𝒀𝟑 → 𝑨;

 𝑩𝟎 = 𝒀𝟎 → 𝑩;

 𝑩𝟏 = 𝒀𝟏 → 𝑩;

 𝑩𝟐 = 𝒀𝟐 → 𝑩;

 𝑩𝟑 = 𝒀𝟑 → 𝑩;

2- 𝒁𝟎 = 𝑌0 ⊕ 𝐵1 ⊕ 𝐴2 ⊕ 𝐴3;

 𝒁𝟏 = 𝑌3 ⊕ 𝐵1 ⊕ 𝐴0 ⊕ 𝐵2;

 𝒁𝟐 = 𝑌2 ⊕ 𝐵0 ⊕ 𝐴1 ⊕ 𝐵3;

 𝒁𝟑 = 𝑌1 ⊕ 𝐵0 ⊕ 𝐴3 ⊕ 𝐵2;
Return (𝑀𝐷𝑆_𝑂𝑈𝑇 = 𝒁𝟑 &𝒁𝟐&𝒁𝟏&𝒁𝟎)

Fig. 6 Top-level block of MDS module

Fig. 7 RTL schematic of Proposed MDS module

Fig. 4 RTL schematic of A- module

Fig. 5 RTL schematic of B-module

Vol.40, No.2. July 2021

154

5. TESTS AND RESULTS

5.1 SIMULATION RESULTS

 The verification of the proposed MDS design was
proved by testing the g-function, Fig. 8. The g-function
is the heart of Twofish. The input 𝑅0 is divided into
four bytes, each byte runs through its own key-
dependent S-box. The S-boxes are described using
VHDL and appended to the MDS proposed design to
construct the g-function. Each S- box is bijective; takes
one byte of input and produces one byte of output. The
four bytes,𝑌1 … 𝑌4 , are multiplied by the proposed
design of MDS matrix. The resulting vector 𝑇0 is
interpreted as a 32-bit word which is the result of g-
function.

 The simulation tool is ModelSim-SE-10.5. Table I
introduces four different test vectors used in proving
the validity of the proposed design [3]. 𝑆0 and 𝑆1 are
forced to “0000000016”. As shown in Fig. 9; the
output results 𝑇0 are typical as its corresponding input
𝑅0 in Table I.

 The simulation results in Fig. 9 presents the output
result of inputting four different inputs to the g -
function. There is a simultaneous output 𝑅0 for each
input 𝑇0. As a result, the proposed design can accept
any change in input and computes its correct
corresponding output, that proves the correctness of the
functionality of the proposed design of the MDS
matrix.

5.2 SYNTHESIS AND COMPARISON RESULTS

The hardware implementation of Twofish algorithm

was demonstrated in [16,19]. The implementation of

the Twofish encryption algorithm on FPGA has been

treated in a number of articles in order to increase the

speed of their proposed designs; decrease the time

delay needed to process the input signals, or to

decrease the area of its modules [13,14,20–24]. There

is a tradeoff in the hardware implementation between

the speed and area. The aim of the proposed design is

not only to minimize the occupied area of the

hardware implementation; but also, to increase the

speed, and to enforce the maximum combinational

path delay to be stable. The speed performance has

been improved by using the pipeline and parallel

techniques for the proposed design of the Twofish-

MDS module. To minimize the area of the proposed

module, the 𝐿𝑈𝑇6 and 𝐿𝑈𝑇6 − 2 primitives of the 25

nm Xilinx FPGA, the 7-Series, have been utilized. The

targeted device for the implementation is Virtex-7

xc7vx330t-3ffg1157. Table II shows the comparison

results of the hardware implementation of the

proposed design and the other related works of MDS

matrix over 𝐺𝐹(28). The comparison in terms of the

occupied area measured in number of LUTs, the delay

in 𝑛𝑠, the maximum frequency in MHz, and the

throughput in Gbps. For fairness in comparison, it has

been established among the related works with same

4 × 4 MDS matrix, the same elements, and over the

same Finite Field.

TABLE I. TEST VECTORS OF G-FUNCTION

32-bit Input
𝑹𝟎

32-bit Output
𝑻𝟎

52𝐶54𝐷𝐷𝐸16 𝐶06𝐷494916

𝐶38𝐷𝐶𝐴𝐴416 7𝐶4536𝐵916

55𝐴538𝐷𝐸16 60𝐷𝐴𝐶1𝐴416

899063𝐵𝐷16 607𝐴𝐴𝐸𝐴𝐷16

Fig. 8 g-Function of the Twofish Algorithm

Fig. 9 simulation results of g-function block inputs and outputs

Vol.40, No.2. July 2021

155

Referring to Table II, the hardware area of the

proposed design on FPGA is the lightest occupied area

among other related works. The area of the proposed

design is only 68 LUTs, this number of LUTs is

exactly as targeted to be in the proposed design. The

cost of the area implementation of the proposed design

is less than 66% of the area of the other comparative

works, and the maximum path time delay is also the

least among others. The proposed design Maximum

frequency is 661.318 MHz with throughput of 21.178

Gbps.

6. CONCLUSION

This paper presents an efficient implementation of
the MDS matrix. The MDS matrix was divided into
modules internally constructed in parallel utilizing the
pipeline technique to decrease the delay of the
proposed design and enhance its maximum frequency.
Xilinx primitives 𝐿𝑈𝑇6 and 𝐿𝑈𝑇6 − 2 were utilized in
the proposed design to control exactly the placement of
components and to guarantee the minimum occupation
area. The verification of the proposed design was
proved using ModelSim tool. The proposed design was
implemented on Xilinx Virtex-7 FPGA. The area of the
proposed design is only 68 LUTs. The synthesizes
results comparing with other related designs show that
the proposed design has the least area, furthermore the
smallest maximum path time delay; with maximum
frequency of 661.318 MHz, and high throughput of
21.178 Gbps. The proposed design is a suitable
candidate for lightweight cryptographic
implementation.

REFERENCES

[1] C. Paar, J. Pelzl, Understanding Cryptography,
Springer Berlin Heidelberg, Berlin, Heidelberg,
2010. https://doi.org/10.1007/978-3-642-04101-
3.

[2] J. Daemen, V. Rijmen, The Design of Rijndael,
Springer Berlin Heidelberg, Berlin, Heidelberg,
2002. https://doi.org/10.1007/978-3-662-04722-
4.

[3] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C.
Hall, Twofish : A 128-Bit Block Cipher, NIST

AES Propos. 15 (1998).

[4] J.P. Pedersen, C. Dahl, Classification of pseudo-
cyclic MDS codes, IEEE Trans. Inf. Theory. 37
(1991) 365–370.
https://doi.org/10.1109/18.75254.

[5] J.I. Kokkala, D.S. Krotov, P.R.J. Ostergard, On
the Classification of MDS Codes, IEEE Trans.
Inf. Theory. 61 (2015) 6485–6492.
https://doi.org/10.1109/TIT.2015.2488659.

[6] R.M. Roth, A. Lempel, A Construction of Non-
Reed-Solomon Type MDS Codes, IEEE Trans.
Inf. Theory. 35 (1989) 655–657.
https://doi.org/10.1109/18.30988.

[7] M. Sajadieh, M. Dakhilalian, H. Mala, P.
Sepehrdad, Recursive diffusion layers for block
ciphers and hash functions, Lect. Notes Comput.
Sci. (Including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics). 7549 LNCS (2012)
385–401. https://doi.org/10.1007/978-3-642-
34047-5_22.

[8] K.C. Gupta, S.K. Pandey, A. Venkateswarlu,
Towards a general construction of recursive MDS
diffusion layers, Des. Codes, Cryptogr. 82 (2017)
179–195. https://doi.org/10.1007/s10623-016-
0261-0.

[9] C. Chen, S.J. Lin, N. Yu, Irregular MDS Array
Codes with Fewer Parity Symbols, IEEE
Commun. Lett. 23 (2019) 1909–1912.
https://doi.org/10.1109/LCOMM.2019.2937778.

[10] D. Yin, Y. Gao, A new construction of
lightweight MDS matrices, 2017 3rd IEEE Int.
Conf. Comput. Commun. ICCC 2017. 2018-
Janua (2018) 2560–2563.
https://doi.org/10.1109/CompComm.2017.83229
97.

[11] C. Beierle, T. Kranz, G. Leander, Lightweight
Multiplication in GF(2^n) with Applications to
MDS Matrices, in: Springer Berlin Heidelberg,
2016: pp. 625–653. https://doi.org/10.1007/978-
3-662-53018-4_23.

[12] S.M. Sim, K. Khoo, F. Oggier, T. Peyrin,
Lightweight MDS involution matrices, Lect.
Notes Comput. Sci. (Including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics).
9054 (2015) 471–493.
https://doi.org/10.1007/978-3-662-48116-5_23.

[13] R. Beaulieu, S. Treatman-Clark, D. Shors, B.
Weeks, J. Smith, L. Wingers, The SIMON and
SPECK lightweight block cIPhers, Proc. - Des.
Autom. Conf. 2015-July (2015).
https://doi.org/10.1145/2744769.2747946.

[14] J. Guo, T. Peyrin, A. Poschmann, M. Robshaw,
The LED block cipher, Lect. Notes Comput. Sci.

TABLE II. COMPARISON OF THE SYNTHESIS RESULTS

MDS Design Finite Field Area
LUT

Delay
ns

Max.
Frequency

MHz

Throughput
Gbps

FPGA

[22] 𝐺𝐹(28)/16916 102 9.615 104 3.328 Xilinx

[25] 𝐺𝐹(28)/16916 112 9.5 105.163 3.365 Xilinx

[26] 𝐺𝐹(28)/16916 185 4 250 8 Altera

[21] 𝐺𝐹(28)/16916 112 - - - Xilinx

[20] 𝐺𝐹(28)/16916 - 13.706 72.960 2.334 Xilinx

Proposed Design 𝐺𝐹(28)/16916 68 1.511 661.813 21.178 Xilinx

Vol.40, No.2. July 2021

156

(Including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics). 6917 LNCS (2011) 326–
341. https://doi.org/10.1007/978-3-642-23951-
9_22.

[15] Xilinx, Virtex-II Libraries Guide for Schematic
Designs, UG616(v14. (2013) 631.
www.Xilinx.com.

[16] J. Solomon, I. V Be, A Study of Twofish
Algorithm, Int. J. Eng. Dev. Res. 4 (2016) 2321–
9939.
https://www.ijedr.org/papers/IJEDR1602023.pdf
.

[17] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C.
Hall, N. Ferguson, Twofish: A 128-bit block
cipher, NIST AES Propos. 15 (1998).

[18] X. Fpgas, Xilinx 7 Series FPGAs :, 405 (2012) 1–
9.

[19] Yeong-Kang Lai, Liang-Gee Chen, Jian-Yi Lai,
Tai-Ming Parng, VLSI architecture design and
implementation for TWOFISH block cipher,
2002 IEEE Int. Symp. Circuits Syst. Proc. (Cat.
No.02CH37353). (2002) II-356-II–359.
https://doi.org/10.1109/ISCAS.2002.1010998.

[20] P. Gehlot, S. R. Biradar, B. P. Singh,
Implementation of Modified Twofish Algorithm
using 128 and 192-bit keys on VHDL, Int. J.
Comput. Appl. 70 (2013) 36–42.
https://doi.org/10.5120/12024-8087.

[21] A. Singh, Study of MDS Matrix used in Twofish
AES (Advanced Encryption Standard)
Algorithm and its VHDL Implementation, 1997.

[22] A. Singh, FPGA Implementation and Analysis of
DES and TWOFISH Encryption Algorithms,
THAPAR, 2010.

[23] D. Smekal, J. Hajny, Z. Martinasek, Hardware-
Accelerated Twofish Core for FPGA, 2018 41st
Int. Conf. Telecommun. Signal Process. TSP
2018. (2018) 1–5.
https://doi.org/10.1109/TSP.2018.8441386.

[24] C. De Cannière, O. Dunkelman, M. Knežević,
KATAN and KTANTAN - A family of small and
efficient hardware-oriented block ciphers, Lect.
Notes Comput. Sci. (Including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics).
5747 LNCS (2009) 272–288.
https://doi.org/10.1007/978-3-642-04138-9_20.

[25] M. De Clercq, V. Levesque, A VHDL
Implementation of the Twofish Block Cipher,
(1999).

[26] O. De Souza Martins Gomes, R.L. Moreno, A
compact 128-bits symmetric cryptography
hardware module, Proc. 2016 8th Int. Conf. Inf.
Technol. Electr. Eng. Empower. Technol. Better
Futur. ICITEE 2016. (2017).
https://doi.org/10.1109/ICITEED.2016.7863244.

Vol.40, No.2. July 2021

157

 تنفيذ فعال لمصفوفة المسافة الفاصلة القصوى على شريحة المصفوفات القابلة للبرمجة حقليا

 الملخص

القصوى" الفاصلة المسافة دراسة "مصفوفة فإن الحديثة، الآونة اهتمام. MDSفي ذا في طبقة MDSأصبح موضوع مكون أهم هي

MDS 𝐺𝐹(28) 4الانتشار في التشفير الكتلي. هذا المقال يقدم مصفوفة × التصميم المقترح على 4 مثالية ذات حجم صغير. تم تطبيق

 LUT6ات . تم استخدام تصميمXilinxباستخدام برامج شركة Virtex-7مصفوفات البوابات المبرمجة حقليا. التنفيذ للتصميم المقترح يستهدف

للتحكم بشكل دقيق في موقع كل مكون من التصميم المقترح للحصول على أصغر مساحة ممكنة. تم Xilinxالخاصة بشركة LUT6-2 و

برنامج باستخدام المقترح بالتصميم الخاص الأداء من التحقق تم السرعة. لتحسين المتوازي والتصميم بالتجزئة التنفيذ طريقة استخدام

Modelsim . إن نتائج التوليف وضحت أن المساحة المشغولة للتصميم المقترح يقدم نتائج تنافسية في المساحة والإنتاجية. بالمقارنة بالتصميمات

، LUT 68المماثلة السابقة، التصميم المقترح يشغل أقل مساحة وأقل زمن للإنتاجية. المساحة المشغولة للتصميم المقترح قلت بشكل ملحوظ،

 جيجا بت في الثانية الواحدة. التصميم المقترح مرشح مناسب لتطبيقات التشفير ذات الحجم الصغير. 21.178إنتاجية مع معدل

