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ABSTRACT 

 

         In this paper, a plasmonic solar cell using silver nanoparticles is presented. The unit cell 

structure composes of two layers, each containing a silver nanoparticle deposited on the 

absorber layer and covered with an indium tin oxide layer. Nanoparticle structure has been used 

for light-trapping to increase the absorption of plasmonic solar cells. By various light trapping 

techniques, light can be concentrated in a thin absorber layer. As it will be clarified, through 

varying the geometry of these nanoparticle structures, the absorption peaks can be directed. All 

simulation data are obtained using the finite element method. The proposed model achieves two 

absorption peaks existing at 1.07 μm and 1.17 μm, each with absorptions of around 50%. The 

parameters of optimized performance have been specified. The results indicate that this model 

shows an absorption full width at half maximum, reaching 122 nm. Moreover, it can be noticed 

that the absorption peak can be increased to reach 0.5. The proposed structure has potential 

applications in the absorption of the infra-red part of the solar spectrum. 
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1. INTRODUCTION 

       The energy trouble can be reduced 

through the conversion of sunlight into 

electricity [1]. Although the plasmonic solar 

cells low cost, it suffers from poor 

absorption of the infrared portion of the solar 

spectrum [2, 3]. Recently light-trapping 

structures have been utilized in different 

ways to increase the absorption of plasmonic 

solar cells. Several structures including 

surface texturing [4-6], anti-reflection 

coatings [7, 8], photonic crystals [9], 

nanogratings [10, 11], and metallic 

nanoparticles [12-13] have been presented to 

enhance the absorption of plasmonic solar 

cells. Solar cells are generally classified into 

four generations [14-18]. By various 
Received:20 May, 2020, Accepted: 31 July , 2020  

  

techniques of nanostructures, light can be 

concentrated in a thin absorber layer through 

scattering, enhanced near-field, or surface 

plasmon polariton phenomenon [1, 2]. The 

absorption enhancement of the absorber 

layer in plasmonic solar cells using 

nanoparticles has been studied by many 

researchers in [19-34]. Nanoparticle 

structures have been used for light-trapping 

to enhance the absorption of plasmonic solar 

cells [1]. In 2014, Novitsky et al. [12] 

demonstrated an effective mechanism for 

expanding the photon bsorption below the 

semiconductor bandgab in the infrared range. 

In 2017, Aboul-Dahab et al. [13] presented 

techniques to enhance the infrared absorption 

coefficients and directing the absorption 

peak of plasmonic solar cells.   In this study, 

a plasmonic solar cell is proposed. The unit 

cell structure composes of two layers, each 
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containing a silver nanoparticle deposited on 

the absorber layer and covered with indium 

tin oxide (ITO) layer. In this structure two 

absorption peaks can be directing. The 

geometry influence of the nanoparticles on 

the absorption magnitude and bandwidth has 

been presented. Numerical investigations of 

the light absorption response of the proposed 

solar cell using the finite element method 

(FEM) have been introduced. 

 

2. STRUCTURE AND DESIGN 

The structure of a single layer is illustrated in 

Figure.1. The unit cell structure composes of 

two layers, each containing a silver 

nanoparticle deposited on the absorber layer 

and covered with ITO layer. Each 

nanoparticle consists of cylindrical silver 

nanoparticle of thickness, h and an elliptical 

cross-section with a semi-minor axis, Rs, 

equals half the semi-major axis, RL.  

 

 

 

Figure.1. Structure of a single layer. 

The size of the unit cell is 80 × 80 nm2. The 

thickness of each layer is of 50 nm. The 

permittivity of absorber layer and ITO are 

assumed equal 12.86 and 4.67, respectively. 

The dispersive properties of the silver 

nanoparticles are determined using the Drude 

model [35]. Throughout the analysis, a RL-

polarized plane wave is used as an incident 

wave. All the simulation data are obtained 

using the FEM method. 

3. RESULTS AND DISCUSSION 

Figure 2 shows the reliance of the absorption 

spectra on the semi-minor axis, Rs, when it 

varies from 10 nm to 12 nm. Other 

nanoparticle parameters are h = 10 nm and L = 

80 nm, and t = 50 nm. The silver nanoparticle 

unit cell is illuminated by incident light 

polarized along the major axis. It is clear that 

the proposed plasmonic solar cell appears two 

separate absorption peaks. The Low-frequency 

absorption peak is approximately the same for 

different semi-minor axes while the High-

frequency absorption peak decreases with the 

increase of Rs. The High-frequency absorption 

peak for Rs = 10 nm was found at λ = 1.07 μm 

with the maximum absorptivity of 0.49 

compared to 0.37 at λ = 1.12 μm for Rs = 12 

nm. Enhancing performance occurs at higher 

values of absorption. Full width at half 

maximum (FWHM) increases with the increase 

of Rs, which referred to a wide absorption 

range of the solar spectrum. The FWHM of the 

High-frequency absorption peak is 69 nm for 

Rs = 10 nm compared to 106 nm for Rs = 12 nm 

while the FWHM of the Low-frequency 

absorption peak is 35 nm for Rs = 10 nm 

compared to 41 nm for Rs = 12 nm. Frequencies 

of both absorption peaks shift to lower 

frequencies with an increase of the semi-minor 

axis, Rs. Enhancing performance occurs at 

higher frequencies. At these high frequencies, 

the photons have higher energies. The results 

indicate that the performance enhances by 

decreasing the nanoparticle radii. 

 

Figure.2. Absorption spectra of the model with 

various nanoparticle semi-minor axes 

h 
2Rs 

L 

t 

0.8 0.9 1.0 1.1 1.2 1.3 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

 [m]

A
b
s
o
rp

ti
o
n

 

 

800 900 1000 1100 1200 1300 1400
0

0.1

0.2

0.3

0.4

0.5

 [nm]

A
bs

or
pt

io
n

 

 

data1

data2

data3

data4

data5

data6

Rs=10 nm 
Rs=10.5 nm 
Rs=11 nm 
Rs=11.5 nm 
Rs=12 nm 



Vol. 41, No. 1. January 2021 

29 
 

Figure.3 shows the absorption spectra of the 

model with various thicknesses, h. Other 

nanoparticle parameters are Rs = 12 nm, L = 

80 nm, and t = 50 nm. It can be observed that 

the proposed plasmonic solar cell has two 

discrete absorption peaks for all different 

values of nanoparticle thickness, h. The 

High-frequency absorption peaks are 

approximately the same of 0.37 compared to 

0.45 for the Low-frequency absorption 

peaks. Frequencies of both absorption peaks 

shift to higher frequencies with an increase 

of the nanoparticle thickness, h. The FWHM 

decreases with the increase of h. The FWHM 

of the High-frequency absorption peak is 120 

nm for h = 8 nm compared to 97 nm for h = 

12 nm while the FWHM of the Low-

frequency absorption peak is slightly 

decreased from 43 nm for h = 8 nm 

compared to 41 nm for h = 12 nm. The 

results indicate that the performance 

enhances by increasing the nanoparticle 

thickness. 

 

Figure.3. Absorption spectra of the model for several 

nanoparticle thicknesses h 

Figure.4 discusses the dependence of the 

absorption spectra on several periods L when it 

varies from 80 nm to 100 nm. Other 

nanoparticle parameters are h = 10 nm, Rs = 12 

nm, and t = 50 nm. It can be seen that two 

absorption peaks were found. It can be noticed 

that when the period L increases, the Low-

frequency absorption peak decreases, and the 

High-frequency absorption peak increases. The 

FWHM of the High-frequency absorption peak 

is 106 nm for L = 80 nm compared to 76 nm 

for L = 100 nm while the FWHM of the Low-

frequency absorption peak is 41 nm for L = 80 

nm compared to 37 nm for L = 100 nm. It can 

be seen that when the period L increases, The 

FWHM of the High-frequency absorption peak 

decreases, and the FWHM of the Low-

frequency absorption peak slightly decreases. 

As illustrated in Figure.4, when the period L 

increases, the Low-frequency absorption peak 

slightly shifts to higher frequencies, and the 

High-frequency absorption peak slightly shifts 

to lower frequencies. Increasing the 

nanoparticle periodicity reduces the cost and 

achieves a good performance. 

 

 

Figure.4. Absorption spectra of the model for several 

nanoparticle periodicities L 

 

Figure.5 shows the dependence of the 

absorption spectra on layer thickness t when 

it varies from 42 nm to 50 nm. Other 

nanoparticle parameters are h = 10 nm, Rs = 

12 nm, and L = 80 nm. It can be noticed that 

when the layer thickness t increases, both 

absorption peaks increase. The FWHM of 

the High-frequency absorption peak is 122 

nm for t = 42 nm compared to 106 nm for t = 

50 nm while the FWHM of the Low-

frequency absorption peak is 37 nm for t = 

42 nm compared to 41 nm for t = 50 nm. It 

can be seen that when the layer thickness t 

increases, The FWHM of the High-

frequency absorption peak decreases and the 

FWHM of the Low-frequency absorption 

peak slightly increases. As illustrated in 

Figure.5, when the layer thickness t 

increases, both absorption peaks shift to 

lower frequencies. The results indicate that 

the performance enhances by increasing the 

thickness t but this increases the cost. 
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Figure.5. Absorption spectra of the model with 

variable layer thickness 

 

As shown in the results, the optimized 

performance achieved using the parameters: 

Rs = 10 nm, h = 10 nm, L = 80 nm, and t = 50 

nm. The enhancing performance occurs at 

higher values of absorption and frequencies. 

All absorption peaks considered here exist at 

wavelengths longer than λg = 0.87 μm, which 

corresponds to the absorber layer bandgap Eg 

= 1.43 eV. The enhanced photon absorption 

below the semiconductor bandgap results 

from the photoemission of electrons by 

nanoparticles. 

 

4. CONCLUSIONS 

In conclusion, a plasmonic solar cell 

formed by two layers of silver nanoparticle 

deposited on the absorber layer and covered 

with ITO layers is presented. It is found that 

the proposed structure shows two separate 

absorption peaks. The absorption peaks can be 

directed through varying the geometry of the 

silver nanoparticle. As shown in the results, 

the proposed plasmonic solar cell achieves a 

full width at half maximum, reaching 122 nm. 

It can be noticed that by changing the 

nanoparticle dimensions, the absorption peak 

can be increased to reach 0.5. The proposed 

structure has potential applications in the 

absorption of the infra-red part of the solar 

spectrum. 
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