[1] Zhang, F., Wu, C., Zhao, X. L., Li, Z. X., Heidarpour, A., & Wang, H. Numerical modeling of concrete-filled double-skin steel square tubular columns under blast loading. Journal of Performance of Constructed Facilities, 29(5), B4015002; 2015.
[2] Karagiozova, D., Yu, T. X., & Lu, G. Transverse blast loading of hollow beams with square cross-sections. Thin-Walled Structures, 62, 169-178; 2013.
[3] Wegener, R. B., & Martin, J. B. Predictions of permanent deformation of impulsively loaded simply supported square tube steel beams. International journal of mechanical sciences, 27(1-2), 55-69; 1985.
[4] Jama H, Nurick G, Bambach M, Grzebieta R, Zhao X-L. Failure modes and
thresholds of square tubular steel beams subjected to blast loads. In: Proceedings of the second international conference on design and analysis of protective structures, DAPS, Singapore, 13th–15th November 2006.
[5] Bambach, M. R., Jama, H., Zhao, X. L., & Grzebieta, R. H. Hollow and concrete filled steel hollow sections under transverse impact loads. Engineering structures, 30(10), 2859-2870; 2008.
[6] Bambach, M. R. Behaviour and design of aluminium hollow sections subjected to transverse blast loads. Thin-Walled Structures, 46(12), 1370-1381; 2008.
[7] Jama HH. The behaviour of tubular steel beams subjected to transverse blast loads [Ph.D. thesis]. Melbourne, Australia: Monash University; 2009.
[8] Jama, H. H., Nurick, G. N., Bambach, M. R., Grzebieta, R. H., & Zhao, X. L. Steel square hollow sections subjected to transverse blast loads. Thin-Walled Structures, 53, 109-122; 2012.
[9] Remennikov, A. M., & Uy, B. Explosive testing and modelling of square tubular steel columns for near-field detonations. Journal of Constructional Steel Research, 101, 290-303; 2014.
[10] ABAQUS [Computer software]. Dassault Systèmes, Waltham, MA.
[11] ANSYS [Computer software]. ANSYS, Canonsburg, PA.
[12] AUTODYN. Interactive non-linear dynamic analysis software, version 4.2, user’s manual. Century Dynamics Inc.; 2001.
[13] LS-DYNA [Computer software]. Livermore Software Technology Corporation, Livermore, CA.
[14] Karagiozova, D., Yu, T. X., Lu, G., & Xiang, X. Response of a circular metallic hollow beam to an impulsive loading. Thin-Walled Structures, 80, 80-90; 2014.
[15] Alam, M. I., & Fawzia, S. Numerical studies on CFRP strengthened steel columns under transverse impact. Composite Structures, 120, 428-441; 2015.
[16] Jama, H. H., Bambach, M. R., Nurick, G. N., Grzebieta, R. H., & Zhao, X. L. Numerical modelling of square tubular steel beams subjected to transverse blast loads. Thin-Walled Structures, 47(12), 1523-1534; 2009.
[17] Ritchie, C. B., Packer, J. A., Seica, M. V., & Zhao, X. L. Behavior of steel rectangular hollow sections subject to blast loading. Journal of Structural Engineering, 143(12), 04017167; 2017.
[18] Merrifield, R. Simplified calculations of blast induced injuries and damage. Health and Safety Executive, Technology and Health Sciences Division; 1993.
[19] Smith P, Hetherington J. Blast and ballistic loading of structures. Great Britain,
London: Butterworth-Heinemann Ltd; 1994. blast resistant connections. Comput Struct 1996;61(5):831–43.
[20] Shi YC, Hao H, Li ZX. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads. Int J Impact Eng, 35:1213–27; 2008.
[21] Fallah, A. S., & Louca, L. A. Pressure–impulse diagrams for elastic-plastic-hardening and softening single-degree-of-freedom models subjected to blast loading. International Journal of Impact Engineering, 34(4), 823-842; 2007.
[22] Li, Q. M., & Meng, H. Pressure-impulse diagram for blast loads based on dimensional analysis and single-degree-of-freedom model. Journal of engineering mechanics, 128(1), 87-92; 2002.
[23] Li, Q. M., & Meng, H. Pulse loading shape effects on pressure–impulse diagram of an elastic–plastic, single-degree-of-freedom structural model. International journal of mechanical sciences, 44(9), 1985-1998; 2002.
[24] Ding, Y., Wang, M., Li, Z. X., & Hao, H. Damage evaluation of the steel tubular column subjected to explosion and post-explosion fire condition. Engineering Structures, 55, 44-55; 2013.
[25] Shi, Y., Li, Z. X., & Hao, H. A new method for progressive collapse analysis of RC frames under blast loading. Engineering Structures, 32(6), 1691-1703; 2010.
[26] Mutalib, A. A., & Hao, H. Development of PI diagrams for FRP strengthened RC columns. International journal of impact engineering, 38(5), 290-304; 2011.
[27] Nassr, A. A., Razaqpur, A. G., Tait, M. J., Campidelli, M., & Foo, S. Strength and stability of steel beam columns under blast load. International Journal of Impact Engineering, 55, 34-48; 2013.
[28] Malvar, L. J. Review of static and dynamic properties of steel reinforcing bars. Materials Journal, 95(5), 609-616; 1998.
[29] Cowper, G. R., & Symonds, P. S. Strain-hardening and strain-rate effects in the impact loading of cantilever beams (No. TR-C11-28). Brown Univ Providence Ri; 1957.
[30] Nassr, A. A., Razaqpur, A. G., Tait, M. J., Campidelli, M., & Foo, S. Experimental performance of steel beams under blast loading. Journal of Performance of Constructed Facilities, 26(5), 600-619; 2011